"""Class containing utils for the ASR system.""" from dataclasses import dataclass import os from AudioLoader.speech import MultilingualLibriSpeech import numpy as np import torch import torchaudio from torch import nn from torch.utils.data import Dataset, DataLoader from enum import Enum from tokenizers import Tokenizer from swr2_asr.tokenizer import CharTokenizer # create enum specifiying dataset splits class MLSSplit(str, Enum): """Enum specifying dataset as they are defined in the Multilingual LibriSpeech dataset""" train = "train" test = "test" dev = "dev" class Split(str, Enum): """Extending the MLSSplit class to allow for a custom validatio split""" train = "train" valid = "valid" test = "test" dev = "dev" def split_to_mls_split(split: Split) -> MLSSplit: """Converts the custom split to a MLSSplit""" if split == Split.valid: return MLSSplit.train else: return split # type: ignore @dataclass class Sample: """Dataclass for a sample in the dataset""" waveform: torch.Tensor spectrogram: torch.Tensor utterance: str sample_rate: int speaker_id: str book_id: str chapter_id: str def tokenizer_factory(tokenizer_path: str, tokenizer_type: str = "BPE"): """Factory for Tokenizer class Args: tokenizer_type (str, optional): Type of tokenizer to use. Defaults to "BPE". Returns: nn.Module: Tokenizer class """ if tokenizer_type == "BPE": return Tokenizer.from_file(tokenizer_path) elif tokenizer_type == "char": return CharTokenizer.from_file(tokenizer_path) class MLSDataset(Dataset): """Custom Dataset for reading Multilingual LibriSpeech Attributes: dataset_path (str): path to the dataset language (str): language of the dataset split (Split): split of the dataset mls_split (MLSSplit): split of the dataset as defined in the Multilingual LibriSpeech dataset dataset_lookup (list): list of dicts containing the speakerid, bookid, chapterid and utterance directory structure: ├── │ ├── train │ │ ├── transcripts.txt │ │ └── audio │ │ └── │ │ └── │ │ └── __.opus / .flac each line in transcripts.txt has the following format: __ """ def __init__(self, dataset_path: str, language: str, split: Split, download: bool): """Initializes the dataset""" self.dataset_path = dataset_path self.language = language self.file_ext = ".opus" if "opus" in language else ".flac" self.mls_split: MLSSplit = split_to_mls_split(split) # split path on disk self.split: Split = split # split used internally self.dataset_lookup = [] self._handle_download_dataset(download) self._validate_local_directory() transcripts_path = os.path.join( dataset_path, language, self.mls_split, "transcripts.txt" ) with open(transcripts_path, "r", encoding="utf-8") as script_file: # read all lines in transcripts.txt transcripts = script_file.readlines() # split each line into (__, ) transcripts = [line.strip().split("\t", 1) for line in transcripts] utterances = [utterance.strip() for _, utterance in transcripts] identifier = [identifier.strip() for identifier, _ in transcripts] identifier = [path.split("_") for path in identifier] self.dataset_lookup = [ { "speakerid": path[0], "bookid": path[1], "chapterid": path[2], "utterance": utterance, } for path, utterance in zip(identifier, utterances) ] # save dataset_lookup as list of dicts, where each dict contains # the speakerid, bookid and chapterid, as well as the utterance # we can then use this to map the utterance to the audio file def _handle_download_dataset(self, download: bool): """Download the dataset""" if ( not os.path.exists(os.path.join(self.dataset_path, self.language)) and download ): os.makedirs(self.dataset_path) url = f"https://dl.fbaipublicfiles.com/mls/{self.language}.tar.gz" torch.hub.download_url_to_file(url, self.dataset_path) elif ( not os.path.exists(os.path.join(self.dataset_path, self.language)) and not download ): raise ValueError("Dataset not found. Set download to True to download it") def _validate_local_directory(self): # check if dataset_path exists if not os.path.exists(self.dataset_path): raise ValueError("Dataset path does not exist") if not os.path.exists(os.path.join(self.dataset_path, self.language)): raise ValueError("Language not found in dataset") if not os.path.exists( os.path.join(self.dataset_path, self.language, self.mls_split) ): raise ValueError("Split not found in dataset") # checks if the transcripts.txt file exists if not os.path.exists( os.path.join(dataset_path, language, split, "transcripts.txt") ): raise ValueError("transcripts.txt not found in dataset") def __get_len__(self): """Returns the length of the dataset""" return len(self.dataset_lookup) def __getitem__(self, idx: int) -> Sample: """One sample""" # get the utterance utterance = self.dataset_lookup[idx]["utterance"] # get the audio file audio_path = os.path.join( self.dataset_path, self.language, self.mls_split, "audio", self.dataset_lookup[idx]["speakerid"], self.dataset_lookup[idx]["bookid"], "_".join( [ self.dataset_lookup[idx]["speakerid"], self.dataset_lookup[idx]["bookid"], self.dataset_lookup[idx]["chapterid"], ] ) + self.file_ext, ) waveform, sample_rate = torchaudio.load(audio_path) # type: ignore return Sample( waveform=waveform, spectrogram=torchaudio.transforms.MelSpectrogram( sample_rate=16000, n_mels=128 )(waveform), utterance=utterance, sample_rate=sample_rate, speaker_id=self.dataset_lookup[idx]["speakerid"], book_id=self.dataset_lookup[idx]["bookid"], chapter_id=self.dataset_lookup[idx]["chapterid"], ) def download(self, dataset_path: str, language: str): """Download the dataset""" os.makedirs(dataset_path) url = f"https://dl.fbaipublicfiles.com/mls/{language}.tar.gz" torch.hub.download_url_to_file(url, dataset_path) class DataProcessor: """Factory for DataProcessingclass Transforms the dataset into spectrograms and labels, as well as a tokenizer """ def __init__( self, dataset: MultilingualLibriSpeech, tokenizer_path: str, data_type: str = "train", tokenizer_type: str = "BPE", ): self.dataset = dataset self.data_type = data_type self.train_audio_transforms = nn.Sequential( torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_mels=128), torchaudio.transforms.FrequencyMasking(freq_mask_param=30), torchaudio.transforms.TimeMasking(time_mask_param=100), ) self.valid_audio_transforms = torchaudio.transforms.MelSpectrogram() self.tokenizer = tokenizer_factory( tokenizer_path=tokenizer_path, tokenizer_type=tokenizer_type ) def __call__(self) -> tuple[np.ndarray, np.ndarray, int, int]: """Returns spectrograms, labels and their lenghts""" for sample in self.dataset: if self.data_type == "train": spec = ( self.train_audio_transforms(sample["waveform"]) .squeeze(0) .transpose(0, 1) ) elif self.data_type == "valid": spec = ( self.valid_audio_transforms(sample["waveform"]) .squeeze(0) .transpose(0, 1) ) else: raise ValueError("data_type should be train or valid") label = torch.Tensor(text_transform.encode(sample["utterance"]).ids) spectrograms = ( nn.utils.rnn.pad_sequence(spectrograms, batch_first=True) .unsqueeze(1) .transpose(2, 3) ) labels = nn.utils.rnn.pad_sequence(labels, batch_first=True) yield spec, label, spec.shape[0] // 2, len(labels) if __name__ == "__main__": dataset_path = "/Volumes/pherkel/SWR2-ASR" language = "mls_german_opus" split = Split.train download = False dataset = MLSDataset(dataset_path, language, split, download) print(dataset[0])