"""Class containing utils for the ASR system.""" import os from enum import Enum from typing import TypedDict import numpy as np import torch import torchaudio from torch import Tensor, nn from torch.utils.data import Dataset from torchaudio.datasets.utils import _extract_tar from swr2_asr.utils.tokenizer import CharTokenizer class DataProcessing: """Data processing class for the dataloader""" def __init__(self, data_type: str, tokenizer: CharTokenizer): self.data_type = data_type self.tokenizer = tokenizer if data_type == "train": self.audio_transform = torch.nn.Sequential( torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_mels=128), torchaudio.transforms.FrequencyMasking(freq_mask_param=30), torchaudio.transforms.TimeMasking(time_mask_param=100), ) elif data_type == "valid": self.audio_transform = torchaudio.transforms.MelSpectrogram() def __call__(self, data) -> tuple[Tensor, Tensor, list, list]: spectrograms = [] labels = [] input_lengths = [] label_lengths = [] for waveform, _, utterance, _, _, _ in data: spec = self.audio_transform(waveform).squeeze(0).transpose(0, 1) spectrograms.append(spec) label = torch.Tensor(self.tokenizer.encode(utterance.lower())) labels.append(label) input_lengths.append(spec.shape[0] // 2) label_lengths.append(len(label)) spectrograms = ( nn.utils.rnn.pad_sequence(spectrograms, batch_first=True).unsqueeze(1).transpose(2, 3) ) labels = nn.utils.rnn.pad_sequence(labels, batch_first=True) return spectrograms, labels, input_lengths, label_lengths # create enum specifiying dataset splits class MLSSplit(str, Enum): """Enum specifying dataset as they are defined in the Multilingual LibriSpeech dataset""" TRAIN = "train" TEST = "test" DEV = "dev" class Split(str, Enum): """Extending the MLSSplit class to allow for a custom validation split""" TRAIN = "train" VALID = "valid" TEST = "test" DEV = "dev" def split_to_mls_split(split_name: Split) -> MLSSplit: """Converts the custom split to a MLSSplit""" if split_name == Split.VALID: return MLSSplit.TRAIN return split_name # type: ignore class Sample(TypedDict): """Type for a sample in the dataset""" waveform: torch.Tensor spectrogram: torch.Tensor input_length: int utterance: torch.Tensor utterance_length: int sample_rate: int speaker_id: str book_id: str chapter_id: str class MLSDataset(Dataset): """Custom Dataset for reading Multilingual LibriSpeech Attributes: dataset_path (str): path to the dataset language (str): language of the dataset split (Split): split of the dataset mls_split (MLSSplit): split of the dataset as defined in the Multilingual LibriSpeech dataset dataset_lookup (list): list of dicts containing the speakerid, bookid, chapterid and utterance directory structure: ├── │ ├── train │ │ ├── transcripts.txt │ │ └── audio │ │ └── │ │ └── │ │ └── __.opus / .flac each line in transcripts.txt has the following format: __ """ def __init__( self, dataset_path: str, language: str, split: Split, limited: bool, download: bool, size: float = 0.2, ): """Initializes the dataset""" self.dataset_path = dataset_path self.language = language self.file_ext = ".opus" if "opus" in language else ".flac" self.mls_split: MLSSplit = split_to_mls_split(split) # split path on disk self.split: Split = split # split used internally self.dataset_lookup = [] self._handle_download_dataset(download) self._validate_local_directory() if limited and (split == Split.TRAIN or split == Split.VALID): self.initialize_limited() else: self.initialize() self.dataset_lookup = self.dataset_lookup[: int(len(self.dataset_lookup) * size)] def initialize_limited(self) -> None: """Initializes the limited supervision dataset""" # get file handles # get file paths # get transcripts # create train or validation split handles = set() train_root_path = os.path.join(self.dataset_path, self.language, "train") # get file handles for 9h with open( os.path.join(train_root_path, "limited_supervision", "9hr", "handles.txt"), "r", encoding="utf-8", ) as file: for line in file: handles.add(line.strip()) # get file handles for 1h splits for handle_path in os.listdir(os.path.join(train_root_path, "limited_supervision", "1hr")): if handle_path not in range(0, 6): continue with open( os.path.join( train_root_path, "limited_supervision", "1hr", handle_path, "handles.txt" ), "r", encoding="utf-8", ) as file: for line in file: handles.add(line.strip()) # get file paths for handles file_paths = [] for handle in handles: file_paths.append( os.path.join( train_root_path, "audio", handle.split("_")[0], handle.split("_")[1], handle + self.file_ext, ) ) # get transcripts for handles transcripts = [] with open(os.path.join(train_root_path, "transcripts.txt"), "r", encoding="utf-8") as file: for line in file: if line.split("\t")[0] in handles: transcripts.append(line.strip()) # create train or valid split randomly with seed 42 if self.split == Split.TRAIN: np.random.seed(42) indices = np.random.choice(len(file_paths), int(len(file_paths) * 0.8)) file_paths = [file_paths[i] for i in indices] transcripts = [transcripts[i] for i in indices] elif self.split == Split.VALID: np.random.seed(42) indices = np.random.choice(len(file_paths), int(len(file_paths) * 0.2)) file_paths = [file_paths[i] for i in indices] transcripts = [transcripts[i] for i in indices] # create dataset lookup self.dataset_lookup = [ { "speakerid": path.split("/")[-3], "bookid": path.split("/")[-2], "chapterid": path.split("/")[-1].split("_")[2].split(".")[0], "utterance": utterance.split("\t")[1], } for path, utterance in zip(file_paths, transcripts, strict=False) ] def initialize(self) -> None: """Initializes the entire dataset Reads the transcripts.txt file and creates a lookup table """ transcripts_path = os.path.join( self.dataset_path, self.language, self.mls_split, "transcripts.txt" ) with open(transcripts_path, "r", encoding="utf-8") as script_file: # read all lines in transcripts.txt transcripts = script_file.readlines() # split each line into (__, ) transcripts = [line.strip().split("\t", 1) for line in transcripts] # type: ignore utterances = [utterance.strip() for _, utterance in transcripts] # type: ignore identifier = [identifier.strip() for identifier, _ in transcripts] # type: ignore identifier = [path.split("_") for path in identifier] if self.split == Split.VALID: np.random.seed(42) indices = np.random.choice(len(utterances), int(len(utterances) * 0.2)) utterances = [utterances[i] for i in indices] identifier = [identifier[i] for i in indices] elif self.split == Split.TRAIN: np.random.seed(42) indices = np.random.choice(len(utterances), int(len(utterances) * 0.8)) utterances = [utterances[i] for i in indices] identifier = [identifier[i] for i in indices] self.dataset_lookup = [ { "speakerid": path[0], "bookid": path[1], "chapterid": path[2], "utterance": utterance, } for path, utterance in zip(identifier, utterances, strict=False) ] def _handle_download_dataset(self, download: bool) -> None: """Download the dataset""" if not download: print("Download flag not set, skipping download") return # zip exists: if os.path.isfile(os.path.join(self.dataset_path, self.language) + ".tar.gz") and download: print(f"Found dataset at {self.dataset_path}. Skipping download") # path exists: elif os.path.isdir(os.path.join(self.dataset_path, self.language)) and download: return else: os.makedirs(self.dataset_path, exist_ok=True) url = f"https://dl.fbaipublicfiles.com/mls/{self.language}.tar.gz" torch.hub.download_url_to_file( url, os.path.join(self.dataset_path, self.language) + ".tar.gz" ) # unzip the dataset if not os.path.isdir(os.path.join(self.dataset_path, self.language)): print( f"Unzipping the dataset at \ {os.path.join(self.dataset_path, self.language) + '.tar.gz'}" ) _extract_tar(os.path.join(self.dataset_path, self.language) + ".tar.gz", overwrite=True) else: print("Dataset is already unzipped, validating it now") return def _validate_local_directory(self): # check if dataset_path exists if not os.path.exists(self.dataset_path): raise ValueError("Dataset path does not exist") if not os.path.exists(os.path.join(self.dataset_path, self.language)): raise ValueError("Language not downloaded!") if not os.path.exists(os.path.join(self.dataset_path, self.language, self.mls_split)): raise ValueError("Split not found in dataset") def __len__(self): """Returns the length of the dataset""" return len(self.dataset_lookup) def __getitem__(self, idx: int) -> tuple[Tensor, int, str, int, int, int]: """One sample Returns: Tuple of the following items; Tensor: Waveform int: Sample rate str: Transcript int: Speaker ID int: Chapter ID int: Utterance ID """ # get the utterance dataset_lookup_entry = self.dataset_lookup[idx] utterance = dataset_lookup_entry["utterance"] # get the audio file audio_path = os.path.join( self.dataset_path, self.language, self.mls_split, "audio", self.dataset_lookup[idx]["speakerid"], self.dataset_lookup[idx]["bookid"], "_".join( [ self.dataset_lookup[idx]["speakerid"], self.dataset_lookup[idx]["bookid"], self.dataset_lookup[idx]["chapterid"], ] ) + self.file_ext, ) waveform, sample_rate = torchaudio.load(audio_path) # pylint: disable=no-member # resample if necessary if sample_rate != 16000: resampler = torchaudio.transforms.Resample(sample_rate, 16000) waveform = resampler(waveform) return ( waveform, sample_rate, utterance, dataset_lookup_entry["speakerid"], dataset_lookup_entry["chapterid"], idx, ) # type: ignore if __name__ == "__main__": DATASET_PATH = "/Volumes/pherkel/SWR2-ASR" LANGUAGE = "mls_german_opus" split = Split.TRAIN DOWNLOAD = False