"""Decoder for CTC-based ASR.""" "" import os from dataclasses import dataclass import torch from torchaudio.datasets.utils import _extract_tar from torchaudio.models.decoder import ctc_decoder from swr2_asr.utils.data import create_lexicon from swr2_asr.utils.tokenizer import CharTokenizer @dataclass class DecoderOutput: """Decoder output.""" words: list[str] def decoder_factory(decoder_type: str = "greedy") -> callable: """Decoder factory.""" if decoder_type == "greedy": return get_greedy_decoder if decoder_type == "lm": return get_beam_search_decoder raise NotImplementedError def get_greedy_decoder( tokenizer: CharTokenizer, # pylint: disable=redefined-outer-name *_, ): """Greedy decoder.""" return GreedyDecoder(tokenizer) def get_beam_search_decoder( tokenizer: CharTokenizer, # pylint: disable=redefined-outer-name hparams: dict, # pylint: disable=redefined-outer-name ): """Beam search decoder.""" hparams = hparams.get("lm", {}) language, lang_model_path, n_gram, beam_size, beam_threshold, n_best, lm_weight, word_score = ( hparams["language"], hparams["language_model_path"], hparams["n_gram"], hparams["beam_size"], hparams["beam_threshold"], hparams["n_best"], hparams["lm_weight"], hparams["word_score"], ) if not os.path.isdir(os.path.join(lang_model_path, f"mls_lm_{language}")): # check if zip file exists if not os.path.isfile(f"data/mls_lm_{language}.tar.gz"): url = f"https://dl.fbaipublicfiles.com/mls/mls_lm_{language}.tar.gz" torch.hub.download_url_to_file(url, f"data/mls_lm_{language}.tar.gz") _extract_tar(f"data/mls_lm_{language}.tar.gz", overwrite=True) tokens_path = os.path.join(lang_model_path, f"mls_lm_{language}", "tokens.txt") if not os.path.isfile(tokens_path): tokenizer.create_tokens_txt(tokens_path) lexicon_path = os.path.join(lang_model_path, f"mls_lm_{language}", "lexicon.txt") if not os.path.isfile(lexicon_path): occurences_path = os.path.join(lang_model_path, f"mls_lm_{language}", "vocab_counts.txt") create_lexicon(occurences_path, lexicon_path) lm_path = os.path.join(lang_model_path, f"mls_lm_{language}", f"{n_gram}-gram_lm.arpa") decoder = ctc_decoder( lexicon=lexicon_path, tokens=tokens_path, lm=lm_path, blank_token="_", sil_token="", unk_word="", nbest=n_best, beam_size=beam_size, beam_threshold=beam_threshold, lm_weight=lm_weight, word_score=word_score, ) return decoder class GreedyDecoder: """Greedy decoder.""" def __init__(self, tokenizer: CharTokenizer): # pylint: disable=redefined-outer-name self.tokenizer = tokenizer def __call__( self, output, greedy_type: str = "inference", labels=None, label_lengths=None ): # pylint: disable=redefined-outer-name """Greedily decode a sequence.""" if greedy_type == "train": res = self.train(output, labels, label_lengths) if greedy_type == "inference": res = self.inference(output) res = [x.split(" ") for x in res] res = [[DecoderOutput(x)] for x in res] return res def train(self, output, labels, label_lengths): """Greedily decode a sequence with known labels.""" blank_label = tokenizer.get_blank_token() arg_maxes = torch.argmax(output, dim=2) # pylint: disable=no-member decodes = [] targets = [] for i, args in enumerate(arg_maxes): decode = [] targets.append(self.tokenizer.decode(labels[i][: label_lengths[i]].tolist())) for j, index in enumerate(args): if index != blank_label: if j != 0 and index == args[j - 1]: continue decode.append(index.item()) decodes.append(self.tokenizer.decode(decode)) return decodes, targets def inference(self, output): """Greedily decode a sequence.""" collapse_repeated = True arg_maxes = torch.argmax(output, dim=2) # pylint: disable=no-member blank_label = self.tokenizer.get_blank_token() decodes = [] for args in arg_maxes: decode = [] for j, index in enumerate(args): if index != blank_label: if collapse_repeated and j != 0 and index == args[j - 1]: continue decode.append(index.item()) decodes.append(self.tokenizer.decode(decode)) return decodes if __name__ == "__main__": tokenizer = CharTokenizer.from_file("data/tokenizers/char_tokenizer_german.json") tokenizer.create_tokens_txt("data/tokenizers/tokens_german.txt") hparams = { "language": "german", "lang_model_path": "data", "n_gram": 3, "beam_size": 100, "beam_threshold": 100, "n_best": 1, "lm_weight": 0.5, "word_score": 1.0, } get_beam_search_decoder(tokenizer, hparams)