"""Decoder for CTC-based ASR.""" "" import torch from swr2_asr.utils.tokenizer import CharTokenizer from swr2_asr.utils.data import create_lexicon import os from torchaudio.datasets.utils import _extract_tar from torchaudio.models.decoder import ctc_decoder LEXICON = "lexicon.txt" # TODO: refactor to use torch CTC decoder class def greedy_decoder(output, labels, label_lengths, tokenizer: CharTokenizer, collapse_repeated=True): """Greedily decode a sequence.""" blank_label = tokenizer.get_blank_token() arg_maxes = torch.argmax(output, dim=2) # pylint: disable=no-member decodes = [] targets = [] for i, args in enumerate(arg_maxes): decode = [] targets.append(tokenizer.decode(labels[i][: label_lengths[i]].tolist())) for j, index in enumerate(args): if index != blank_label: if collapse_repeated and j != 0 and index == args[j - 1]: continue decode.append(index.item()) decodes.append(tokenizer.decode(decode)) return decodes, targets # TODO: add beam search decoder def beam_search_decoder(output, tokenizer:CharTokenizer, tokenizer_txt_path,lang_model_path): if not os.path.isdir(lang_model_path): url = f"https://dl.fbaipublicfiles.com/mls/mls_lm_german.tar.gz" torch.hub.download_url_to_file( url, "data/mls_lm_german.tar.gz" ) _extract_tar("data/mls_lm_german.tar.gz", overwrite=True) if not os.path.isfile(tokenizer_txt_path): tokenizer.create_txt(tokenizer_txt_path) lexicon_path= os.join(lang_model_path, LEXICON) if not os.path.isfile(lexicon_path): occurences_path = os.join(lang_model_path,"vocab_counts.txt") create_lexicon(occurences_path, lexicon_path) lm_path = os.join(lang_model_path,"3-gram_lm.apa") decoder = ctc_decoder(lexicon = lexicon_path, tokenizer = tokenizer_txt_path, lm =lm_path, blank_token = '_', nbest =1, sil_token= '', unk_word = '') return decoder