"""Decoder for CTC-based ASR.""" "" import os import torch from torchaudio.datasets.utils import _extract_tar from torchaudio.models.decoder import ctc_decoder from swr2_asr.utils.data import create_lexicon from swr2_asr.utils.tokenizer import CharTokenizer # TODO: refactor to use torch CTC decoder class def greedy_decoder( output, labels, label_lengths, tokenizer: CharTokenizer, collapse_repeated=True ): # pylint: disable=redefined-outer-name """Greedily decode a sequence.""" blank_label = tokenizer.get_blank_token() arg_maxes = torch.argmax(output, dim=2) # pylint: disable=no-member decodes = [] targets = [] for i, args in enumerate(arg_maxes): decode = [] targets.append(tokenizer.decode(labels[i][: label_lengths[i]].tolist())) for j, index in enumerate(args): if index != blank_label: if collapse_repeated and j != 0 and index == args[j - 1]: continue decode.append(index.item()) decodes.append(tokenizer.decode(decode)) return decodes, targets def beam_search_decoder( tokenizer: CharTokenizer, # pylint: disable=redefined-outer-name tokens_path: str, lang_model_path: str, language: str, hparams: dict, # pylint: disable=redefined-outer-name ): """Beam search decoder.""" n_gram, beam_size, beam_threshold, n_best, lm_weight, word_score = ( hparams["n_gram"], hparams["beam_size"], hparams["beam_threshold"], hparams["n_best"], hparams["lm_weight"], hparams["word_score"], ) if not os.path.isdir(os.path.join(lang_model_path, f"mls_lm_{language}")): url = f"https://dl.fbaipublicfiles.com/mls/mls_lm_{language}.tar.gz" torch.hub.download_url_to_file(url, f"data/mls_lm_{language}.tar.gz") _extract_tar("data/mls_lm_{language}.tar.gz", overwrite=True) if not os.path.isfile(tokens_path): tokenizer.create_tokens_txt(tokens_path) lexicon_path = os.path.join(lang_model_path, f"mls_lm_{language}", "lexicon.txt") if not os.path.isfile(lexicon_path): occurences_path = os.path.join(lang_model_path, f"mls_lm_{language}", "vocab_counts.txt") create_lexicon(occurences_path, lexicon_path) lm_path = os.path.join(lang_model_path, f"mls_lm_{language}", f"{n_gram}-gram_lm.arpa") decoder = ctc_decoder( lexicon=lexicon_path, tokens=tokens_path, lm=lm_path, blank_token="_", sil_token="", unk_word="", nbest=n_best, beam_size=beam_size, beam_threshold=beam_threshold, lm_weight=lm_weight, word_score=word_score, ) return decoder if __name__ == "__main__": tokenizer = CharTokenizer.from_file("data/tokenizers/char_tokenizer_german.json") tokenizer.create_tokens_txt("data/tokenizers/tokens_german.txt") hparams = { "n_gram": 3, "beam_size": 100, "beam_threshold": 100, "n_best": 1, "lm_weight": 0.5, "word_score": 1.0, } beam_search_decoder( tokenizer, "data/tokenizers/tokens_german.txt", "data", "german", hparams, )