1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
|
"""Training script for the ASR model."""
from AudioLoader.speech.mls import MultilingualLibriSpeech
import torch
import torchaudio
import torchaudio.functional as F
class GreedyCTCDecoder(torch.nn.Module):
def __init__(self, labels, blank=0) -> None:
super().__init__()
self.labels = labels
self.blank = blank
def forward(self, emission: torch.Tensor) -> str:
"""Given a sequence emission over labels, get the best path string
Args:
emission (Tensor): Logit tensors. Shape `[num_seq, num_label]`.
Returns:
str: The resulting transcript
"""
indices = torch.argmax(emission, dim=-1) # [num_seq,]
indices = torch.unique_consecutive(indices, dim=-1)
indices = [i for i in indices if i != self.blank]
return "".join([self.labels[i] for i in indices])
def main() -> None:
"""Main function."""
# choose between cuda, cpu and mps devices
device = "cuda" if torch.cuda.is_available() else "cpu"
# device = "mps"
device = torch.device(device)
torch.random.manual_seed(42)
bundle = torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H
print(f"Sample rate (model): {bundle.sample_rate}")
print(f"Labels (model): {bundle.get_labels()}")
model = bundle.get_model().to(device)
print(model.__class__)
# only do all things for one single sample
dataset = MultilingualLibriSpeech("data", "mls_german_opus", split="train", download=True)
print(dataset[0])
# load waveforms and sample rate from dataset
waveform, sample_rate = dataset[0]["waveform"], dataset[0]["sample_rate"]
if sample_rate != bundle.sample_rate:
waveform = F.resample(waveform, sample_rate, int(bundle.sample_rate))
waveform.to(device)
with torch.inference_mode():
features, _ = model.extract_features(waveform)
with torch.inference_mode():
emission, _ = model(waveform)
decoder = GreedyCTCDecoder(labels=bundle.get_labels())
transcript = decoder(emission[0])
print(transcript)
if __name__ == "__main__":
main()
|