aboutsummaryrefslogtreecommitdiff
path: root/swr2_asr/utils.py
blob: 87d4f82127690adf068499803d63bdc7e77137db (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
"""Class containing utils for the ASR system."""
import os
from enum import Enum
from typing import TypedDict

import numpy as np
import matplotlib.pyplot as plt
import torch
import torchaudio
from tokenizers import Tokenizer
from torch.utils.data import Dataset
from torchaudio.datasets.utils import _extract_tar as extract_archive

from swr2_asr.tokenizer import TokenizerType

train_audio_transforms = torch.nn.Sequential(
    torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_mels=128),
    torchaudio.transforms.FrequencyMasking(freq_mask_param=30),
    torchaudio.transforms.TimeMasking(time_mask_param=100),
)


# create enum specifiying dataset splits
class MLSSplit(str, Enum):
    """Enum specifying dataset as they are defined in the
    Multilingual LibriSpeech dataset"""

    TRAIN = "train"
    TEST = "test"
    DEV = "dev"


class Split(str, Enum):
    """Extending the MLSSplit class to allow for a custom validatio split"""

    TRAIN = "train"
    VALID = "valid"
    TEST = "test"
    DEV = "dev"


def split_to_mls_split(split_name: Split) -> MLSSplit:
    """Converts the custom split to a MLSSplit"""
    if split_name == Split.VALID:
        return MLSSplit.TRAIN
    else:
        return split_name  # type: ignore


class Sample(TypedDict):
    """Type for a sample in the dataset"""

    waveform: torch.Tensor
    spectrogram: torch.Tensor
    input_length: int
    utterance: torch.Tensor
    utterance_length: int
    sample_rate: int
    speaker_id: str
    book_id: str
    chapter_id: str


class MLSDataset(Dataset):
    """Custom Dataset for reading Multilingual LibriSpeech

    Attributes:
        dataset_path (str):
            path to the dataset
        language (str):
            language of the dataset
        split (Split):
            split of the dataset
        mls_split (MLSSplit):
            split of the dataset as defined in the Multilingual LibriSpeech dataset
        dataset_lookup (list):
            list of dicts containing the speakerid, bookid, chapterid and utterance

    directory structure:
        <dataset_path>
        ├── <language>
        │  ├── train
        │  │  ├── transcripts.txt
        │  │  └── audio
        │  │     └── <speakerid>
        │  │        └── <bookid>
        │  │           └── <speakerid>_<bookid>_<chapterid>.opus / .flac

        each line in transcripts.txt has the following format:
        <speakerid>_<bookid>_<chapterid> <utterance>
    """

    def __init__(
        self,
        dataset_path: str,
        language: str,
        split: Split,
        download: bool,
        spectrogram_hparams: dict | None,
    ):
        """Initializes the dataset"""
        self.dataset_path = dataset_path
        self.language = language
        self.file_ext = ".opus" if "opus" in language else ".flac"
        self.mls_split: MLSSplit = split_to_mls_split(split)  # split path on disk
        self.split: Split = split  # split used internally

        if spectrogram_hparams is None:
            self.spectrogram_hparams = {
                "sample_rate": 16000,
                "n_fft": 400,
                "win_length": 400,
                "hop_length": 160,
                "n_mels": 128,
                "f_min": 0,
                "f_max": 8000,
                "power": 2.0,
            }
        else:
            self.spectrogram_hparams = spectrogram_hparams

        self.dataset_lookup = []
        self.tokenizer: type[TokenizerType]

        self._handle_download_dataset(download)
        self._validate_local_directory()
        self.initialize()

    def initialize(self) -> None:
        """Initializes the dataset

        Reads the transcripts.txt file and creates a lookup table
        """
        transcripts_path = os.path.join(
            self.dataset_path, self.language, self.mls_split, "transcripts.txt"
        )

        with open(transcripts_path, "r", encoding="utf-8") as script_file:
            # read all lines in transcripts.txt
            transcripts = script_file.readlines()
            # split each line into (<speakerid>_<bookid>_<chapterid>, <utterance>)
            transcripts = [line.strip().split("\t", 1) for line in transcripts]  # type: ignore
            utterances = [utterance.strip() for _, utterance in transcripts]  # type: ignore
            identifier = [identifier.strip() for identifier, _ in transcripts]  # type: ignore
            identifier = [path.split("_") for path in identifier]

            if self.split == Split.VALID:
                np.random.seed(42)
                indices = np.random.choice(len(utterances), int(len(utterances) * 0.2))
                utterances = [utterances[i] for i in indices]
                identifier = [identifier[i] for i in indices]
            elif self.split == Split.TRAIN:
                np.random.seed(42)
                indices = np.random.choice(len(utterances), int(len(utterances) * 0.8))
                utterances = [utterances[i] for i in indices]
                identifier = [identifier[i] for i in indices]

            self.dataset_lookup = [
                {
                    "speakerid": path[0],
                    "bookid": path[1],
                    "chapterid": path[2],
                    "utterance": utterance,
                }
                for path, utterance in zip(identifier, utterances, strict=False)
            ]

    def set_tokenizer(self, tokenizer: type[TokenizerType]):
        """Sets the tokenizer"""
        self.tokenizer = tokenizer

    def _handle_download_dataset(self, download: bool) -> None:
        """Download the dataset"""
        if not download:
            print("Download flag not set, skipping download")
            return
        # zip exists:
        if os.path.isfile(os.path.join(self.dataset_path, self.language) + ".tar.gz") and download:
            print(f"Found dataset at {self.dataset_path}. Skipping download")
        # zip does not exist:
        else:
            os.makedirs(self.dataset_path, exist_ok=True)
            url = f"https://dl.fbaipublicfiles.com/mls/{self.language}.tar.gz"

            torch.hub.download_url_to_file(
                url, os.path.join(self.dataset_path, self.language) + ".tar.gz"
            )

        # unzip the dataset
        if not os.path.isdir(os.path.join(self.dataset_path, self.language)):
            print(
                f"Unzipping the dataset at {os.path.join(self.dataset_path, self.language) + '.tar.gz'}"
            )
            extract_archive(
                os.path.join(self.dataset_path, self.language) + ".tar.gz", overwrite=True
            )
        else:
            print("Dataset is already unzipped, validating it now")
            return

    def _validate_local_directory(self):
        # check if dataset_path exists
        if not os.path.exists(self.dataset_path):
            raise ValueError("Dataset path does not exist")
        if not os.path.exists(os.path.join(self.dataset_path, self.language)):
            raise ValueError("Language not downloaded!")
        if not os.path.exists(os.path.join(self.dataset_path, self.language, self.mls_split)):
            raise ValueError("Split not found in dataset")

    def __len__(self):
        """Returns the length of the dataset"""
        return len(self.dataset_lookup)

    def __getitem__(self, idx: int) -> Sample:
        """One sample"""
        if self.tokenizer is None:
            raise ValueError("No tokenizer set")
        # get the utterance
        utterance = self.dataset_lookup[idx]["utterance"]

        # get the audio file
        audio_path = os.path.join(
            self.dataset_path,
            self.language,
            self.mls_split,
            "audio",
            self.dataset_lookup[idx]["speakerid"],
            self.dataset_lookup[idx]["bookid"],
            "_".join(
                [
                    self.dataset_lookup[idx]["speakerid"],
                    self.dataset_lookup[idx]["bookid"],
                    self.dataset_lookup[idx]["chapterid"],
                ]
            )
            + self.file_ext,
        )

        waveform, sample_rate = torchaudio.load(audio_path)  # type: ignore

        # resample if necessary
        if sample_rate != self.spectrogram_hparams["sample_rate"]:
            resampler = torchaudio.transforms.Resample(
                sample_rate, self.spectrogram_hparams["sample_rate"]
            )
            waveform = resampler(waveform)

        spec = (
            torchaudio.transforms.MelSpectrogram(**self.spectrogram_hparams)(waveform)
            .squeeze(0)
            .transpose(0, 1)
        )

        input_length = spec.shape[0] // 2

        utterance_length = len(utterance)

        utterance = self.tokenizer.encode(utterance)

        utterance = torch.LongTensor(utterance.ids)

        return Sample(
            waveform=waveform,
            spectrogram=spec,
            input_length=input_length,
            utterance=utterance,
            utterance_length=utterance_length,
            sample_rate=self.spectrogram_hparams["sample_rate"],
            speaker_id=self.dataset_lookup[idx]["speakerid"],
            book_id=self.dataset_lookup[idx]["bookid"],
            chapter_id=self.dataset_lookup[idx]["chapterid"],
        )


def collate_fn(samples: list[Sample]) -> dict:
    """Collate function for the dataloader

    pads all tensors within a batch to the same dimensions
    """
    waveforms = []
    spectrograms = []
    labels = []
    input_lengths = []
    label_lengths = []

    for sample in samples:
        waveforms.append(sample["waveform"].transpose(0, 1))
        spectrograms.append(sample["spectrogram"])
        labels.append(sample["utterance"])
        input_lengths.append(sample["spectrogram"].shape[0] // 2)
        label_lengths.append(len(sample["utterance"]))

    waveforms = torch.nn.utils.rnn.pad_sequence(waveforms, batch_first=True)
    spectrograms = (
        torch.nn.utils.rnn.pad_sequence(spectrograms, batch_first=True).unsqueeze(1).transpose(2, 3)
    )
    labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True)

    return {
        "waveform": waveforms,
        "spectrogram": spectrograms,
        "input_length": input_lengths,
        "utterance": labels,
        "utterance_length": label_lengths,
    }


if __name__ == "__main__":
    DATASET_PATH = "/Volumes/pherkel/SWR2-ASR"
    LANGUAGE = "mls_german_opus"
    split = Split.TRAIN
    DOWNLOAD = False

    dataset = MLSDataset(DATASET_PATH, LANGUAGE, split, DOWNLOAD, None)

    tok = Tokenizer.from_file("data/tokenizers/bpe_tokenizer_german_3000.json")
    dataset.set_tokenizer(tok)


def plot(epochs,path):
    losses =  list()
    test_losses = list()
    cers = list()
    wers =list()
    for epoch in range(1, epochs +1):
        current_state = torch.load(path + str(epoch))
        losses.append(current_state["loss"])
        test_losses.append(current_state["test_loss"])
        cers.append(current_state["avg_cer"])
        wers.append(current_state["avg_wer"])
    
    plt.plot(losses)
    plt.plot(test_losses)
    plt.savefig("losses.svg")