aboutsummaryrefslogtreecommitdiffhomepage
path: root/archventuretime.md
blob: 1145063fc883fd677bc4d3ea660a5d1405299fbe (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
# Archventuretime
## TODO -> still WIP
Archventuretime is a reversing challenge, where you have to find obtain a license-key.

## First look
The challenge consists of binary and a Dockerfile. The Dockerfile installs various QEMU packages on an ubuntu system and then starts the binary. 
After starting the docker you are prompted with `Enter license key> `, so I entered a few random chars and, surprise, `[WARNING] Invalid format!`
 (Note: i changed the flag in `docker run -t` to `docker run -ti` to get inputs working).

# The main binary
So let's look at the included binary `chal`:
```
> file chal
chal: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, [...] , for GNU/Linux 3.2.0, stripped
```
Unfortunately `chal` is stripped so reversing it will be a bit harder. So let's get to work and decompile `chal` with ghidra. If we search for the `Enter license key> `, we find the following functions. I added some comments to it, with ideas I got from the initial look.
```c
undefined8 FUN_00101c48(void) {
  /* [...] <- variable definitions removed for readability */
  
  // read liscence key up to length 24d, and remove new lines
  printf("Enter license key> ");
  fgets((char *)&local_48,0x18,stdin);
  sVar1 = strcspn((char *)&local_48,"\n");
  *(undefined *)((long)&local_48 + sVar1) = 0;

  // call some function with the liscence key, not sure what it does yet
  FUN_001014a9(&local_48);
  
  // remove every 6th char from the key and save the result in local_28
  local_50 = 0;
  for (local_4c = 0; local_4c < 0x17; local_4c = local_4c  + 1) {
    if ((local_4c + 1) % 6 == 0) {
      local_50 = local_50 + 1;
    }
    else {
      *(undefined *)((long)&local_28 + (long)(local_4c - l ocal_50)) =
           *(undefined *)((long)&local_48 + (long)local_4c) ;
    }
  }

  // call a function, with the stripped liscence key
  FUN_001015dc(&local_28);

  // call a function with the liscence key
  FUN_00101920(&local_48);
  
  if (local_10 != *(long *)(in_FS_OFFSET + 0x28)) {
                    /* WARNING: Subroutine does not return * /
    __stack_chk_fail();
  }
  return 0;
}
```
We saw that the functions reads the key and then calls three different functions with it. So let's call the function `readKey` and take a look what the first called function does. We already know, that it takes the license-key as an argument, so I already renamed the parameter and added commands:
```c

void FUN_001014a9(char *key) {
  size_t sVar1;
  ushort **ppuVar2;
  int local_c;
  
  // ensure that the key is greater than 23d, else print a warning and exit
  // since we read keys with length up to 24d we know that the liscence key must exactly be 24d 
  // chars long
  sVar1 = strlen(key);
  if (sVar1 < 0x17) {
    puts(PTR_s_[WARNING]_Invalid_format!_0012a010) ;
                    /* WARNING: Subroutine does not return * /
    exit(1);
  }
  // loop through the key
  local_c = 0;
  do {
    if (0x16 < local_c) {
      return;
    }
    // check that every 6th char is a '-' 
    if ((local_c + 1) % 6 == 0) {
      if (key[local_c] != '-') {
        puts(PTR_s_[WARNING]_Invalid_format!_0012a01 0);
                    /* WARNING: Subroutine does not return * /
        exit(1);
      }
    }
    // check that every other char is uppercase and alphanumeric, if this is not the case
    // print a warning and exit the programm
    else {
      // __ctype_b_loc() returns a struct with informations about the char
      ppuVar2 = __ctype_b_loc();
      // char is not upper case?
      if (((*ppuVar2)[key[local_c]] & 0x800) == 0) {
        ppuVar2 = __ctype_b_loc();
        // char is not a number?
        if (((*ppuVar2)[key[local_c]] & 0x100) == 0) {
          puts(PTR_s_[WARNING]_Invalid_format!_0012a0 10);
                    /* WARNING: Subroutine does not return * /
          exit(1);
        }
      }
    }
    local_c = local_c + 1;
  } while(true);
}
```
So the method seems to check that the license-key is in the format "XXXXX-XXXXX-XXXXX-XXXXX", with X being an alphanumeric char. So let's call the method `checkFormat` and construct a key and input it into the binary.

```
> ./chal
Enter license key> 12345-ABCDE-12345-ABCDE
[ERROR] Invalid license key!
```
Yaaay 🎉, a different error message. Since the error message isn't printed in `checkFormat` our key has the correct format now and we can continue to the next method call in the `readKey` function. Again, I already renamed the parameter of the function and added comments:

```c

void FUN_001015dc(char *strippedKey) {
   /* [...] <- variable definitions removed for readability */

  // change working directory to '/tmp'
  chdir("/tmp");
  
  // loop with 4 iterations
  for (local_d0 = 0; local_d0 < 4; local_d0 = local_d0 + 1 ) {
    lVar3 = (long)(int)local_d0;
    puVar1 = (&PTR_s_qemu-riscv64_-L_/usr/riscv64-li n_00129c80)[lVar3 * 3];
    __buf = (&PTR_DAT_00129c88)[lVar3 * 3];
    __n = *(size_t *)(&DAT_00129c90 + lVar3 * 0x18);
    local_a4 = 0x5858586b63656863;
    local_9c = 0x585858;
    iVar2 = mkstemp((char *)&local_a4);
    write(iVar2,__buf,__n);
    close(iVar2);
    chmod((char *)&local_a4,0x1c0);
    snprintf((char *)&local_98,0x80,"%s %s %s",puVar1, &local_a4,strippedKey);
    iVar2 = system((char *)&local_98);
    if (iVar2 != 0) {
      remove((char *)&local_a4);
      puts(PTR_s_[ERROR]_Invalid_license_key!_0012a0 18);
                    /* WARNING: Subroutine does not return * /
      exit(1);
    }
    remove((char *)&local_a4);
  }
  if (local_10 != *(long *)(in_FS_OFFSET + 0x28)) {
                    /* WARNING: Subroutine does not return * /
    __stack_chk_fail();
  }
  return;
}
```
Ok a lot is happening here, let's give names to the variables:
```c
void FUN_001015dc(char *strippedKey) {

  /* [...] <- variable definitions removed for readability */

  // change working directory to '/tmp'
  chdir("/tmp");

  // loop with 4 iterations
  for (idx = 0; idx < 4; idx = idx + 1) {
    idx_ = (long)(int)idx;
                    /* commandPrefix = qemu-riscv64 -L /usr/riscv64-linux-gnu */
    commandPrefix = (&PTR_s_qemu-riscv64_-L_/usr/r iscv64-lin_00129c80)[idx_ * 3];

	// read raw
    __buf = (&PTR_DAT_00129c88)[idx_ * 3];
    __n = *(size_t *)(&DAT_00129c90 + idx_ * 0x18);

	// create a file with name checkXXXXXX, with X being random chars 
	// and write __buf into it
    filename = 0x5858586b63656863;
    local_9c = 0x585858;
    fileDescriptor = mkstemp((char *)&filename);
    write(fileDescriptor,__buf,__n);
    close(fileDescriptor);

	// make the file executable
    chmod((char *)&filename,0x1c0);

	// execute the command qemu-riscv64 -L /usr/riscv64-linux-gnu filename strippedKey
    snprintf((char *)&local_98,0x80,"%s %s %s",commandPrefix,&filename,strippedKey);
    status = system((char *)&local_98);

	// if the previously executed command returns an error, print an error and exit
	
    if (status != 0) {
      // deltete the file
      remove((char *)&filename);
      puts(PTR_s_[ERROR]_Invalid_license_key!_0012a0 18);
                    /* WARNING: Subroutine does not return * /
      exit(1);
    }
    // delete the file
    remove((char *)&filenameTemplate);
  }
  if (local_10 != *(long *)(in_FS_OFFSET + 0x28)) {
                    /* WARNING: Subroutine does not return * /
    __stack_chk_fail();
  }
  return;
}
```
The function creates 4 new binaries, executes them with the license-key as an argument. If one binary fails, an error is printed and the `chal` exists, so we call the function `checkWithBinaries`. Before we dive deeper in the newly created binaries, let's take a quick look at the third function call in the `readKey` function:
```c
void FUN_00101920(void *param_1) {
    /* [...] <- variable definitions removed for readability */

  local_10 = *(long *)(in_FS_OFFSET + 0x28);
  puts(PTR_s_[CORRECT]_License_key_validated_001 2a020);
  printf("Decrypting product");
  fflush(stdout);
  for (local_130 = 0; local_130 < 3; local_130 = local_13 0 + 1) {
    sleep(1);
    putc(0x2e,stdout);
    fflush(stdout);
  }
  putc(10,stdout);
  putc(10,stdout);
  fflush(stdout);

/* [...] <- variable definitions removed for readability */


  // use AES to decrypt the Flag with the key
  iVar1 = FUN_00101828(&local_e8,0x50,&local_108,&l ocal_118,&local_98);
  *(undefined *)((long)&local_98 + (long)iVar1) = 0;
  puts(
      "Welcome to GPN CTF 2024!\n\n            ========= ==            \n        ===================        \n     -= ======================-     \n    ============ ===============    \n  -===============-==== =========-  \n  ===========::::::============= =  \n =============:=========::::====== \n==== ===========:::::::::::::=======\n===========::=-::: ::::::::::=======\n==========::::=-::::::::::========= \n=========::::::=-:-================\n====== ==::::::::=-:================\n ======::::::::::=-:== ============ \n  =====:::::::::::=-=============  \n  -=====:::::::::::=============-  \n    ========= ==================    \n     -================ =======-     \n        ===================        \n            ===========            \n\n"
      );
  puts((char *)&local_98);
  if (local_10 != *(long *)(in_FS_OFFSET + 0x28)) {
                    /* WARNING: Subroutine does not return * /
    __stack_chk_fail();
  }
  return;
}
```
This function seems to decrypt the Flag with the license-key using the AES and print a nice message. As far as I can tell, the key decryption looks save. So we need to obtain the license-key by reversing the binaries created by the `checkWithBinaries` function.

## Four new binaries
At first, we actually need to obtain the binaries, which isn't trivial because the are instantly delted after their execution:
```c
void  checkWithBinaries(char  *strippedKey) {
    // [...]
	if  (status !=  0)  {  
		remove((char  *)&filename);
		puts(PTR_s_[ERROR]_Invalid_license_key!_0012a0 18); 
		exit(1); 
	}
	// [...]
}
```

 I can think of two good ways to achieve this:
* Debug `chal` with gdb and break right before `remove` gets called
* Patch the binary and change `remove` to `strlen` for example
 
I went with the second option, and created `chal_patched`,  executing it yields:
```
> ./chal_patched
Enter license key> 12345-ABCDE-12345-ABCDE
[ERROR] Invalid license key!
> ls /tmp | grep "check"
checkr5Rt4S
``` 
Voila, the first binary! Decompiling it with ghirda and searching a bit yields the following main function (I already renamed a few symbols):
```c
ulong main(int param_1,long param_2)

{
  undefined4 strLen;
  long check;
  ulong succ_;
  char *arg1;
  
  if (param_1 < 2) {
    succ_ = 1;
  }
  else {
    arg1 = *(char **)(param_2 + 8);
    strLen = getStrLen(arg1);
    sort(arg1,strLen);
    check = strcmp(arg1,"067889BBCKKMOPPUVWYY");
    if (check == 0) {
      succ_ = 0;
    }
    else {
      succ_ = 1;
    }
  }
  return succ_;
}
```
Sort is just a baisc quicksort implementation. So the binary just checks if the inputed liscence-key consists of the same chars as the corret liscence key in arbitrary order. With this we know all chars of our Key `067889BBCKKMOPPUVWYY` and can construct a new key bypassing the first binary:
```
> rm /tmp/check*
> ./chal_patched 
Enter license key> 06788-9BBCK-KMOPP-UVWYY
[ERROR] Invalid license key!
> ls /tmp/ | grep check
checkHhOuNh
checkJRzpc8
```
Nice! Our second binary, lets also analyze it with ghidra:
```c

undefined8 main(int param_1,long param_2) {

   /* [...] <- variable definitions removed for readability */
  
  if (param_1 < 2) {
    uVar1 = 1;
  }
  else {
    __s = *(char **)(param_2 + 8);
    strlen(__s);
    // loop through the key, split it in to 4 blocks of size 5
    for (local_24 = 0; local_24 < 4; local_24 = local_24 + 1) {
      local_20 = 0;
      local_1c = 0;
      for (local_18 = local_24 * 5; local_18 < (local_24 + 1) * 5; local_18 = local_18 + 1) {
       // check if the char is uppercase
       // if thats the case we add its value (ascii representation) and -0x41 to local_1c 
        ppuVar2 = __ctype_b_loc();
        if (((*ppuVar2)[__s[local_18]] & 0x800) == 0) {
          ppuVar2 = __ctype_b_loc();
          if (((*ppuVar2)[__s[local_18]] & 0x100) != 0) {
            local_1c = local_1c + __s[local_18] + -0x41;
          }
        }
        // check if the char is numeric
        // if thats the case we add its value and -0x30 to local_20
        else {
          local_20 = local_20 + __s[local_18] + -0x30;
        }
      }
      // check if the sum for every block matches some constant
      // numeric chars and uppercase chars are seperated into two diffrent sums
      if (local_20 != *(int *)(&DAT_00102010 + (long)loca l_24 * 4)) {
        return 1;
      }
      if (local_1c != *(int *)(&DAT_00102020 + (long)loca l_24 * 4)) {
        return 1;
      }
    }
    uVar1 = 0;
  }
  return uVar1;
}
```
So this method splits the Key into 4 Blocks of 5 and then sums the block seperatly for uppercase and numeric chars. For example:
```
Key: 06788-9BBCK-KMOPP-UVWYY (Note: the key is passed without the '-' to the binary)
Blocks:
// TODO = I made a mistake here somwhere with the indices
06788 -> sumNumeric = 0 + 6 + 7 + 8, sumUppercase = 0
9BBCK -> sumNumeric = 9, sumUppercase = B + B + C + K = 1 + 1 + 2 + 10
KMOPP -> sumNumeric = 0, sumUppercase = 11 + 13 + 14 + 15
UVWYY -> sumNumeric = 0, sumUppercase = 20 + 21 + 22 + 24 + 34
```
Then we take those sums and check each against a constant that we can obtain from the binary. With that we can write a script, which given all possible letters (from the first binary) puts out every possible key (Note that this script puts out some duplicates, but this won't be a problem):
```py
import itertools  
  
  
# the constants we got from the second binary  
num0 = 0  
num1 = 0x00000007  
num2 = 0x0000000E  
num3 = 0x00000011  
  
let0 = 0x0000003D  
let1 = 0x00000024  
let2 = 0x0000002C  
let3 = 0x00000032  
  
# all possbile letters and numbers (from the first binary)  
letters = list("BBCKKMOPPUVWYY")  
numbers = list("067889")  
  
  
def list_diff(l1, l2):  
    """  
 :return l1 without all elements in l2 """  lx1 = l1[:]  
    for i in l2:  
        if i in lx1:  
            lx1.remove(i)  
    return lx1  
  
  
def get_combinations_up_to_5(l):  
    result = []  
    for i in range(0, 6):  
        result += list(itertools.combinations(l, i))  
    return result  
  
  
def find_sets(l, k):  
    """  
 find sets up to length 5 which sum up to k """  result = []  
    combinations = get_combinations_up_to_5(l)  
    for i in combinations:  
        if sum(i) == k:  
            result.append(i)  
    return result  
  
  
def flatten(l):  
    result = []  
    for i in l:  
        if type(i) is list:  
            for j in i:  
                result.append(j)  
        else:  
            result.append(i)  
    return result  
  
  
def flatten_result(l):  
    result = []  
    for i in l:  
        result.append(flatten(i))  
    return result  
  
  
def combine(elem, l):  
    result = []  
    for i in l:  
        if i is list:  
            for j in i:  
                result.append([elem, j])  
        else:  
            result.append([elem, i])  
    return result  
  
  
def partition_subset_sum(l, sizes):  
    """  
 partitions l in to combinations up to length 5 which sum matches sizes[i] """  valid = find_sets(l, sizes[0])  
    if len(sizes) == 1:  
        return valid  
 result = []  
    for valid_set in valid:  
        new_l = list_diff(l, valid_set)  
        new_valid = partition_subset_sum(new_l, sizes[1:])  
        result += combine(valid_set, new_valid)  
  
    return flatten_result(result)  
  
  
def encode(l, n):  
    encoded = []  
    for i in l:  
        encoded.append(ord(i) - n)  
    return encoded  
  
  
def decode(l, n):  
    decoded = []  
    for i in l:  
        tuple_ = []  
        for j in i:  
            tuple_.append(chr(j + n))  
        decoded.append(tuple(tuple_))  
  
    return decoded  
  
  
number_subsets = [decode(i, 48) for i in partition_subset_sum(encode(numbers, 48), [num0, num1, num2, num3])]  
letter_subsets = [decode(i, 65) for i in partition_subset_sum(encode(letters, 65), [let0, let1, let2, let3])]
```
Lets add print statements and run the code
```py
for i in letter_subsets:  
    for j in number_subsets:  
        x0 = i[0] + j[0]  
        x1 = i[1] + j[1]  
        x2 = i[2] + j[2]  
        x3 = i[3] + j[3]  
        if len(x0) == 5 and len(x1) == 5 and len(x2) == 5 and len(x3) == 5:  
            print(x0, x1, x2, x3)
```
```
[('P', 'W', 'Y'), ('M', 'Y'), ('B', 'C', 'U', 'V'), ('B', 'K', 'K', 'O', 'P')]
[(), ('7',), ('6', '8'), ('8', '9')]
```
With that we can build a new liscence key, which sould get past the first and second binary:
```
[...]
('K', 'K', 'M', 'O', 'P') ('B', 'P', 'U', '0', '7') ('B', 'V', 'W', '6', '8') ('C', 'Y', 'Y', '8', '9')
```
Lets bring it into the right format:
```
KKMOP-BPU07-BVW68-CYY89
```
And check if it works:

```
> rm /tmp/check*
> ./chal_patched 
Enter license key> KKMOP-BPU07-BVW68-CYY89
[ERROR] Invalid license key!
> ls /tmp/ | grep check
checkiUZg6q
checklhvtqU
checktyOyll
```
Here we go, our third binary :). As always we put it into ghidra (I already renamed a few symbols)
```c

undefined4 .opd.FUN_1000074c(int argc,longlong arg s) {
  int len;
  char *alphaNumIndex;
  int notSucc;
  undefined4 uVar1;
  char *key;
  int idx;
  
  if (argc < 2) {
    uVar1 = 1;
  }
  else {
    key = *(char **)(args + 8);
    // strLen wraps strlen
    len = strLen(key);
    // loop through the key
    for (idx = 0; idx < len + -1; idx = idx + 1) {
      // get the index in the alphabet + numerbs in the key
      // AlphaNum points to ABCDEFGHIJKLMNOPQRSTUVWXYZ012345689
      // strChr wraps strchr
      alphaNumIndex._4_4_ = strChr(AlphaNum,key[idx]) ;
      
      // UNK_10000940 points to a array of intergers with only the last 8Bit set
      // So we have 36 sections of size 24.
      // 36 is the size of the alpahbet plus the numbers
      // we pass the start of the section (index by the current char) to charInRange and we 
      // also pass the next char into char in range
      notSucc = charInRange(&UNK_10000940 + (longlong)(alphaNumIndex._4_4_ - (int)AlphaNum) * 96,
                            key[(longlong)idx + 1],24);
      if (notSucc == 0) {
        return 1;
      }
    }
    uVar1 = 0;
  }
  return uVar1;
}

```
So we loop through the key, in `charInRange` we perform some sort of check and if returns 0 the program exits with an error. Next we examine `charInRange` (Symbols renamed):
```c

undefined4 charInRange(longlong prevCharAddr,int char,int x24) {
  int idx;
  
  idx = 0;
  while(true) {
    // x24 is always 24
    if (x24 <= idx) {
      // keep in mind 0 means error
      return 0;
    }
    if (char == *(int *)(prevCharAddr + (longlong)idx * 4) ) break;
    idx = idx + 1;
  }
  return 1;
}
```
`charInRange` checks if the next char is somwhere in the section. If that is not the case it returns an error. This is the next constraint for out liscence-key. Nice! The next python script. Lets start off by extracting the array out of the binary:
```py
integers = []
try:  
    with open("<pathToBinary>/third", "rb") as fin:  
        # 0x0000940 is the start address of the array
        # 0x00016C0 the end address
        fin.seek(0x0000940)  
        for i in range(int((0x00016C0 - 0x0000940) / 4)):  
            fin.read(3)  
            x = fin.read(1)  
            integers.append(x)  
  
        for i in range(0, len(integers), 24):  
            blocksOf24.append(integers[i:i + 24])  
except FileNotFoundError:  
    print("File 'third' not found.")  
    exit(1)
```
Let's also add some code to generate permutations of the previously generated blocks and check if they are within the constrains of the third binary:
```py
from itertools import combinations, permutations  
from second import letter_subsets, number_subsets
  
alphaNum = list("ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789")  
  
def getPermutations(l):  
    c = []  
    n = 5  
  for i in range(n - 1, n):  
        c.extend(permutations(l, i + 1))  
    return c  
  
def printAsKey(l):  
    for x in range(len(l)):  
        if (x + 1) % 5 == 0 and x != 19:  
            print(l[x] + "-")  
        else:  
            print(l[x])  
    print("\n")  
  
def getAsInput(l):  
    result = ""  
  for x in range(len(l)):  
        result += l[x]  
    return result  
  
def combineLists(l1, l2):  
    result = []  
    c00 = getPermutations(l1)  
    c1 = getPermutations(l2)  
    for xx in c00:  
        for y in c1:  
            result.append(list(xx) + list(y))  
    return result  
  
integers = []  
blocksOf24 = []  
  
try:  
    with open("third", "rb") as fin:  
        fin.seek(0x0000940)  
        for i in range(int((0x00016C0 - 0x0000940) / 4)):  
            fin.read(3)  
            x = fin.read(1)  
            integers.append(x)  
  
        for i in range(0, len(integers), 24):  
            blocksOf24.append(integers[i:i + 24])  
except FileNotFoundError:  
    print("File 'third' not found.")  
    exit(1)  
  
def checkRule(chr, nextChr):  
    index = alphaNum.index(str(chr))  
    block = blocksOf24[index]  
    if nextChr.encode() in block:  
        return True  
 else:  
        return False  
  
possibleCombinations = []  
  
for pN in number_subsets:  
    for pL in letter_subsets:  
        pC = [pN[0] + pL[0], pN[1] + pL[1], pN[2] + pL[2], pN[3] + pL[3]]  
        continueFlag = False  
 for x in pC:  
            if len(x) != 5:  
                continueFlag = True  
 break if continueFlag:  
            continue  
  possibleCombinations.append(pC)  
  
def check(permutations):  
    result = []  
    for possibility in permutations:  
        appendFlag = True  
 for i in range(4):  
            if not checkRule(possibility[i], possibility[i + 1]):  
                appendFlag = False  
 break if appendFlag:  
            result.append(possibility)  
    return result  
  
def checkBordersAndCombine(l1, l2):  
    result = []  
    for xx in l1:  
        for y in l2:  
            if len(y) == 10:  
                # this condition will make sense after we saw the fourth binary
                if not (y[8] == "8" and y[7] == "M" and y[5] == "Y"):  
                    continue  
 if checkRule(xx[-1], y[0]):  
                result.append(xx + y)  
    return result  
  
allCombinations = []  
for pC in possibleCombinations:  
    firstPermutations = check(getPermutations(pC[0]))  
    secondPermutations = check(getPermutations(pC[1]))  
    thirdPermutations = check(getPermutations(pC[2]))  
    fourthPermutations = check(getPermutations(pC[3]))  
    firstSecond = checkBordersAndCombine(firstPermutations, secondPermutations)  
    thirdFourth = checkBordersAndCombine(thirdPermutations, fourthPermutations)  
    allCombinations__ = checkBordersAndCombine(firstSecond, thirdFourth)  
    allCombinations.extend(allCombinations__)  
  
print(allCombinations[0])
```
Running the program yields:
```
('P', 'B', 'V', 'C', 'W', '7', 'B', 'K', 'K', 'P', '0', 'Y', '8', '6', 'U', 'Y', '9', 'M', '8', 'O')
```
Formating it correctly and inputing it into the chal again gives us:
```
> rm /tmp/check*
> ./chal_patched 
Enter license key> 06788-9BBCK-KMOPP-UVWYY
[ERROR] Invalid license key!
> ls /tmp/ | grep check
check0HCUhx
checkALAL1v
checkN8Dg5E
checkWGTL4q
```
Thats the fourth binary! You already know whats the next step, we put it into ghidra :)
(Symbols renamed and comments added)
```c

undefined8 FUN_00100754(int param_1,long param_ 2) {

  /* [...] <- variable definitions removed for readability */
  
  if (param_1 < 2) {
    uVar1 = 1;
  }
  else {
    key = *(char **)(param_2 + 8);
    strLen = strlen(key);
    for (idx = 0; idx < (int)strLen; idx = idx + 1) {
      // DAT_001008e8 points to an integer value with len 20
      // All values are 0xFFFFFFFF except those at index 8, 7 and 5
      // 8 -> 8
      // 7 -> M
      // 5 -> Y
      // An Integer with value 0xFFFFFFFF is smaller than 0 so we fail the first check
      // for index 8,7 and 5 we don't
      // => our key is 8 at index 8, M at index 7 and Y at index 5
      if ((0 < *(int *)(&DAT_001008e8 + (long)idx * 4)) &&
         ((uint)(byte)key[idx] != *(uint *)(&DAT_001008e8 + (long)idx * 4))) {
        return 9;
      }
    }
    for (kdx = 0; kdx < (int)strLen; kdx = kdx + 1) {
      for (udx = 0; udx < 10; udx = udx + 1) {
        index = ((long)kdx * 10 + (long)udx) * 16;
        uStack_c = (uint)((ulong)*(undefined8 *)(&DAT_0 0100938 + index) >> 32);
        if (uStack_c == (byte)key[kdx]) {
          index1 = (int)*(undefined8 *)(&DAT_00100940 +  index);
          local_4 = (uint)((ulong)*(undefined8 *)(&DAT_00 100940 + index) >> 0x20);
          if ((byte)key[index1] != local_4) {
            return 1;
          }
        }
      }
    }
    uVar1 = 0;
  }
  return uVar1;
}
```
This leaves us with 2 possibilties, reverse the second for-loop or bruteforce the key. With the previous constrains with have about 500k of of possible keys left (including duplicatess). At this point I was pretty hungry and wanted to take a break so I went for the second option and enjoyed some nice Gulasch at GPN:
```py
import subprocess  
import asyncio  
  
  
def background(f):  
    def wrapped(*args, **kwargs):  
        return asyncio.get_event_loop().run_in_executor(None, f, *args, **kwargs)  
  
    return wrapped  
  
  
@background  
def bruteforce(ix):  
    x = allCombinations[ix]  
    result = subprocess.Popen(  
        "qemu-aarch64 -L /usr/aarch64-linux-gnu <pathToBinary>/fourth " + getAsInput(x),  
        shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)  
    result.communicate()[0]  
    return_code = result.returncode  
    if return_code == 0:  
        print("Success")  
        print(getAsInput(x))  
  
        exit(0)  
    if ix % 100 == 0:  
        print(ix)  
  
  
for ix in range(len(allCombinations)):  
    bruteforce(ix)
```
With that I'am able to test about 7k keys per minute
```
500k / 7k per min = 70 min worstcase
```
Actually the key was found around the 10 minute mark.
```
[...]
71800
71900
Success
UPPBKK0Y7C6B8VWY9M8O
```
Nice, lets bring it into the correct format:
```
./chal 
Enter license key> UPPBK-K0Y7C-6B8VW-Y9M8O
[CORRECT] License key validated

Decrypting product...

Welcome to GPN CTF 2024!

            ===========            
        ===================        
     -=======================-     
    ===========================    
  -===============-=============-  
  ===========::::::==============  
 =============:=========::::====== 
===============:::::::::::::=======
===========::=-:::::::::::::=======
==========::::=-::::::::::=========
=========::::::=-:-================
========::::::::=-:================
 ======::::::::::=-:============== 
  =====:::::::::::=-=============  
  -=====:::::::::::=============-  
    ===========================    
     -=======================-     
        ===================        
            ===========            


GPNCTF{W0nd3rful!_Y0u're_2_cl3ver_f0r_th4t_l1cens3_ch3ck!_W3ll_d0ne_<3}
```