import cv2 import imutils import numpy as np def order_points(pts): rect = np.zeros((4, 2), dtype="float32") s = pts.sum(axis=1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] diff = np.diff(pts, axis=1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] return rect def four_point_transform(image, pts): rect = order_points(pts) (tl, tr, br, bl) = rect width_a = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) width_b = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) max_width = max(int(width_a), int(width_b)) height_a = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) height_b = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) max_height = max(int(height_a), int(height_b)) dst = np.array([ [0, 0], [max_width - 1, 0], [max_width - 1, max_height - 1], [0, max_height - 1]], dtype="float32") transformation = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(image, transformation, (max_width, max_height)) return warped def align_images(im1, im2): im1_gra = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY) im2_gray = cv2.cvtColor(im2, cv2.COLOR_BGR2GRAY) orb = cv2.ORB_create(500) keypoints1, descriptors1 = orb.detectAndCompute(im1_gra, None) keypoints2, descriptors2 = orb.detectAndCompute(im2_gray, None) matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING) matches = matcher.match(descriptors1, descriptors2, None) matches.sort(key=lambda x: x.distance, reverse=False) num_good_matches = int(len(matches) * 0.15) matches = matches[:num_good_matches] im_matches = cv2.drawMatches(im1, keypoints1, im2, keypoints2, matches, None) cv2.imwrite("matches.jpg", im_matches) points1 = np.zeros((len(matches), 2), dtype=np.float32) points2 = np.zeros((len(matches), 2), dtype=np.float32) for i, match in enumerate(matches): points1[i, :] = keypoints1[match.queryIdx].pt points2[i, :] = keypoints2[match.trainIdx].pt h, mask = cv2.findHomography(points1, points2, cv2.RANSAC) height, width, channels = im2.shape im1_reg = cv2.warpPerspective(im1, h, (width, height)) return im1_reg, h def color_difference(color1, color2): percentage1 = (color1[0] / 255 * 100 + color1[1] / 255 * 100 + color1[2] / 255 * 100) / 3 percentage2 = (color2[0] / 255 * 100 + color2[1] / 255 * 100 + color2[2] / 255 * 100) / 3 return percentage1 - percentage2 if percentage1 - percentage2 > 0 else 100 if __name__ == '__main__': image = cv2.imread("example.jpg") ratio = image.shape[0] / 500.0 orig = image.copy() gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (5, 5), 0) edged = cv2.Canny(gray, 75, 200) cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5] for c in cnts: peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.02 * peri, True) if len(approx) == 4: screenCnt = approx break cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2) warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio) cv2.imwrite("before.jpg", warped) ref_filename = "mask.jpg" im_reference = cv2.imread(ref_filename, cv2.IMREAD_COLOR) warped, h = align_images(warped, im_reference) print("Estimated homography : \n", h) out_filename = "aligned.jpg" cv2.imwrite(out_filename, warped) # cv2.imshow("Warped", warped) # cv2.waitKey(0) color = warped[392, 54] blue = [0x2A, 0xAB, 0xE1] black = [0, 0, 0] detected = [color[2], color[1], color[0]] if color_difference(blue, detected) < 30: print("Color is blue!") elif color_difference(black, detected) < 30: print("Color is black!")