1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
import cv2
import imutils
import numpy as np
def order_points(pts):
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def four_point_transform(image, pts):
rect = order_points(pts)
(tl, tr, br, bl) = rect
width_a = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
width_b = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
max_width = max(int(width_a), int(width_b))
height_a = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
height_b = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
max_height = max(int(height_a), int(height_b))
dst = np.array([
[0, 0],
[max_width - 1, 0],
[max_width - 1, max_height - 1],
[0, max_height - 1]], dtype="float32")
transformation = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, transformation, (max_width, max_height))
return warped
def align_images(im1, im2):
im1_gra = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY)
im2_gray = cv2.cvtColor(im2, cv2.COLOR_BGR2GRAY)
orb = cv2.ORB_create(500)
keypoints1, descriptors1 = orb.detectAndCompute(im1_gra, None)
keypoints2, descriptors2 = orb.detectAndCompute(im2_gray, None)
matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING)
matches = matcher.match(descriptors1, descriptors2, None)
matches.sort(key=lambda x: x.distance, reverse=False)
num_good_matches = int(len(matches) * 0.15)
matches = matches[:num_good_matches]
im_matches = cv2.drawMatches(im1, keypoints1, im2, keypoints2, matches, None)
cv2.imwrite("matches.jpg", im_matches)
points1 = np.zeros((len(matches), 2), dtype=np.float32)
points2 = np.zeros((len(matches), 2), dtype=np.float32)
for i, match in enumerate(matches):
points1[i, :] = keypoints1[match.queryIdx].pt
points2[i, :] = keypoints2[match.trainIdx].pt
h, mask = cv2.findHomography(points1, points2, cv2.RANSAC)
height, width, channels = im2.shape
im1_reg = cv2.warpPerspective(im1, h, (width, height))
return im1_reg, h
def color_difference(rgb1, rgb2):
# TODO: Fix CIE L*a*b difference calculation
rgb1 = np.array([rgb1], dtype=np.uint8)
rgb2 = np.array([rgb1], dtype=np.uint8)
lab1 = cv2.cvtColor(rgb1, cv2.COLOR_RGB2Lab)
lab2 = cv2.cvtColor(rgb1, cv2.COLOR_RGB2Lab)
print(lab1)
print(lab2)
return 100
if __name__ == '__main__':
image = cv2.imread("example.jpg")
ratio = image.shape[0] / 500.0
orig = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(gray, 75, 200)
cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5]
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.02 * peri, True)
if len(approx) == 4:
screenCnt = approx
break
cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)
warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)
cv2.imwrite("before.jpg", warped)
ref_filename = "mask.jpg"
im_reference = cv2.imread(ref_filename, cv2.IMREAD_COLOR)
warped, h = align_images(warped, im_reference)
print("Estimated homography : \n", h)
out_filename = "aligned.jpg"
cv2.imwrite(out_filename, warped)
# cv2.imshow("Warped", warped)
# cv2.waitKey(0)
print(color_difference(np.array([1, 1, 0]), (np.array([0, 0, 0]))))
white = np.array([99, 99, 99])
blue = np.array([0x2A, 0xAB, 0xE1])
black = np.array([0, 0, 0])
height, width, channels = warped.shape
print(round(height / 2))
color_difference(blue, white)
for x in range(width):
pixel_color = warped[round(height / 2), x]
detected = [pixel_color[2], pixel_color[1], pixel_color[0]]
white_diff = color_difference(white, detected)
blue_diff = color_difference(blue, detected)
black_diff = color_difference(black, detected)
print("\n")
print(x)
print(detected)
print(white_diff)
print(blue_diff)
print(black_diff)
if white_diff < blue_diff and white_diff < black_diff:
print("white")
elif blue_diff < white_diff and blue_diff < black_diff:
print("blue")
print(x)
elif black_diff < blue_diff and black_diff < white_diff:
print("black")
print(x)
|