summaryrefslogtreecommitdiff
path: root/scan.py
blob: dab27dcef18c35893885d67008c8aa6627f59ea7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import cv2
import imutils
import numpy as np


def order_points(pts):
    rect = np.zeros((4, 2), dtype="float32")
    s = pts.sum(axis=1)
    rect[0] = pts[np.argmin(s)]
    rect[2] = pts[np.argmax(s)]
    diff = np.diff(pts, axis=1)
    rect[1] = pts[np.argmin(diff)]
    rect[3] = pts[np.argmax(diff)]
    return rect


def four_point_transform(image, pts):
    rect = order_points(pts)
    (tl, tr, br, bl) = rect
    width_a = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
    width_b = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
    max_width = max(int(width_a), int(width_b))

    height_a = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
    height_b = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
    max_height = max(int(height_a), int(height_b))

    dst = np.array([
        [0, 0],
        [max_width - 1, 0],
        [max_width - 1, max_height - 1],
        [0, max_height - 1]], dtype="float32")

    transformation = cv2.getPerspectiveTransform(rect, dst)
    warped = cv2.warpPerspective(image, transformation, (max_width, max_height))

    return warped


def align_images(im1, im2):
    im1_gra = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY)
    im2_gray = cv2.cvtColor(im2, cv2.COLOR_BGR2GRAY)

    orb = cv2.ORB_create(500)
    keypoints1, descriptors1 = orb.detectAndCompute(im1_gra, None)
    keypoints2, descriptors2 = orb.detectAndCompute(im2_gray, None)

    matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING)
    matches = matcher.match(descriptors1, descriptors2, None)

    matches.sort(key=lambda x: x.distance, reverse=False)

    num_good_matches = int(len(matches) * 0.15)
    matches = matches[:num_good_matches]

    im_matches = cv2.drawMatches(im1, keypoints1, im2, keypoints2, matches, None)
    cv2.imwrite("matches.jpg", im_matches)

    points1 = np.zeros((len(matches), 2), dtype=np.float32)
    points2 = np.zeros((len(matches), 2), dtype=np.float32)

    for i, match in enumerate(matches):
        points1[i, :] = keypoints1[match.queryIdx].pt
        points2[i, :] = keypoints2[match.trainIdx].pt

    h, mask = cv2.findHomography(points1, points2, cv2.RANSAC)

    height, width, channels = im2.shape
    im1_reg = cv2.warpPerspective(im1, h, (width, height))

    return im1_reg, h


def color_difference(color1, color2):
    percentage1 = (color1[0] / 255 * 100 + color1[1] / 255 * 100 + color1[2] / 255 * 100) / 3
    percentage2 = (color2[0] / 255 * 100 + color2[1] / 255 * 100 + color2[2] / 255 * 100) / 3
    return percentage1 - percentage2 if percentage1 - percentage2 > 0 else 100


if __name__ == '__main__':
    image = cv2.imread("example.jpg")
    ratio = image.shape[0] / 500.0
    orig = image.copy()

    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    gray = cv2.GaussianBlur(gray, (5, 5), 0)
    edged = cv2.Canny(gray, 75, 200)

    cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    cnts = imutils.grab_contours(cnts)
    cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5]

    for c in cnts:
        peri = cv2.arcLength(c, True)
        approx = cv2.approxPolyDP(c, 0.02 * peri, True)
        if len(approx) == 4:
            screenCnt = approx
            break

    cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)

    warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)
    cv2.imwrite("before.jpg", warped)

    ref_filename = "mask.jpg"
    im_reference = cv2.imread(ref_filename, cv2.IMREAD_COLOR)
    warped, h = align_images(warped, im_reference)
    print("Estimated homography : \n", h)
    out_filename = "aligned.jpg"
    cv2.imwrite(out_filename, warped)

    # cv2.imshow("Warped", warped)
    # cv2.waitKey(0)
    color = warped[392, 54]
    blue = [0x2A, 0xAB, 0xE1]
    black = [0, 0, 0]
    detected = [color[2], color[1], color[0]]
    if color_difference(blue, detected) < 30:
        print("Color is blue!")
    elif color_difference(black, detected) < 30:
        print("Color is black!")