aboutsummaryrefslogtreecommitdiff
path: root/readme.md
diff options
context:
space:
mode:
authorMarvin Borner2024-09-07 17:39:02 +0200
committerMarvin Borner2024-09-07 17:39:02 +0200
commit0aacbcf63f585634c5d5561dfcf5d16f365027d6 (patch)
treef2d0652e5c5297e7c4bac5d0f2bc202d529274e0 /readme.md
Initial commit
Diffstat (limited to 'readme.md')
-rw-r--r--readme.md139
1 files changed, 139 insertions, 0 deletions
diff --git a/readme.md b/readme.md
new file mode 100644
index 0000000..6071510
--- /dev/null
+++ b/readme.md
@@ -0,0 +1,139 @@
+# BLC Experiments
+
+Small experiment to find the smallest binary encoding of lambda terms. I
+use an empirical approach with the terms located in `samples/`. The
+source also serves as a reference C implementation of BLC encodings.
+
+Of course, encodings that allow sharing of duplicate terms (e.g. in a
+binary encoded DAG) can yield even smaller encodings. I’ve done that in
+the [BLoC](https://github.com/marvinborner/BLoC) encoding and I will
+apply the insights from this experiments there as well.
+
+## Traditional BLC
+
+$$
+\begin{aligned}
+f(\lambda m) &= 00\ f(M)\\
+f(M N) &= 01\ f(M)\ f(N)\\
+f(i) &= 1^i\ 0
+\end{aligned}
+$$
+
+**Problem**: de Bruijn indices are encoded in *unary* ($O(n)$).
+
+### Statistics
+
+TODO
+
+### Resources:
+
+- [Binary Lambda
+ Calculus](https://tromp.github.io/cl/Binary_lambda_calculus.html)
+ (John Tromp)
+
+## Levenshtein Indices (BLC2)
+
+$$
+\begin{aligned}
+f(\lambda M) &= 00\ f(M)\\
+f(M N) &= 01\ f(M)\ f(N)\\
+f(i) &= \mathrm{code}(i)
+\end{aligned}
+$$
+
+### Statistics
+
+TODO (compare with blc)
+
+### Resources
+
+- [Levenshtein Coding](https://en.wikipedia.org/wiki/Levenshtein_coding)
+ (Wikipedia)
+
+## Mateusz Naściszewski
+
+$$
+\begin{aligned}
+f(t) &= g(0, t)\\
+g(0, i) &= \text{undefined}\\
+g(1, 0) &= 1\\
+g(n, 0) &= 10\\
+g(n, i) &= 1\ g(n-1, i-1)\\
+g(0, \lambda M) &= 0\ g(1, M)\\
+g(n, \lambda M) &= 00\ g(n+1, M)\\
+g(0, M\ N) &= 1\ g(1, M)\\
+g(n, M\ N) &= 01\ g(n, M)\ g(n, N)
+\end{aligned}
+$$
+
+### Statistics
+
+TODO
+
+### Resources
+
+- [Implementation](https://github.com/tromp/AIT/commit/f8c7d191519bc8df4380d49934f2c9b9bdfeef19)
+ (John Tromp)
+
+## Merged Left-Apps
+
+Here I “merge” multiple left applications with a single prefix. This
+uses one bit more for binary applications. However, practical lambda
+terms often use many consecutive left applications!
+
+$$
+\begin{aligned}
+f(\lambda M) &= 01\ f(M)\\
+f(M_1\dots M_n) &= 0^n\ 1\ f(M_1)\dots f(M_n)\\
+f(i) &= 1^i 0
+\end{aligned}
+$$
+
+### Statistics
+
+TODO
+
+### Resources
+
+- None?
+
+## Merged Multi-Abs
+
+Here I “merge” multiple abstractions with a single prefix.
+
+$$
+\begin{aligned}
+f(\lambda_1\dots \lambda_n M) &= 0^{n+1}\ 1\ f(M)\\
+f(M\ N) &= 01\ f(M)\ f(N)\\
+f(i) &= 1^i 0
+\end{aligned}
+$$
+
+Slightly better, I can combine this with the previous technique!
+
+$$
+\begin{aligned}
+f(\lambda_1\dots \lambda_n M) &= 0^n\ 11\ f(M)\\
+f(M_1\ M_n) &= 0^n\ 10\ f(M_1)\dots f(M_n)\\
+f(i) &= 1^i 0
+\end{aligned}
+$$
+
+Or, merge it directly! The *trick* is to see applications as zeroth
+abstractions. Any immediate applications inside abstractions are handled
+directly by the abstraction constructor.
+
+$$
+\begin{aligned}
+f(\lambda_1\dots \lambda_n (M_1\dots M_m)) &= 0^n\ 1\ 0^m\ 1\ f(M_1)\dots f(M_n)\\
+f(i) &= 1^i 0
+\end{aligned}
+$$
+
+### Statistics
+
+TODO
+
+### Resources
+
+- None?