1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
module src/cpu
import bytearray
import queue
import src/ram
import src/renderer
import io/time
/*
The CPU for the Chip8 emulator.
CPU Cycle and Effects:
1. Fetch Opcode
2. Decode Opcode
3. Execute Opcode
4. Update Timers
5. Update Display
6. Wait for next cycle
*/
extern io def getNow(): Int =
js "Date.now()"
chez "(current-milliseconds)"
llvm """
%time = call i64 @time(ptr null)
%ms = mul i64 %time, 1000
ret i64 %ms
"""
vm "effekt::getNow()"
interface CPU {
def initCPU(rom: ByteArray): Unit
def cycleCPU(): Unit
}
def convertKey(key: String): Int = key match {
case "1" => 1
case "2" => 2
case "3" => 3
case "4" => 12
case "q" => 4
case "w" => 5
case "e" => 6
case "r" => 13
case "a" => 7
case "s" => 8
case "d" => 9
case "f" => 14
case "z" => 10
case "x" => 0
case "c" => 11
case "v" => 15
case _ => -1
}
def makeCPU() {r: Renderer} = {
// Initialize the RAM
var ram in global = makeRam()
// Initialize the CPU registers
var v: ByteArray in global = allocate(16) // 16 8-bit registers
var i: Int in global = 0 // 16-bit register treat as 12-bit !!!
var delay: Byte in global = 0.toByte() // Delay timer
var sound: Byte in global = 0.toByte() // Sound timer
var pc: Int in global = 512 // Program counter
var sp: Byte in global = 0.toByte() // Stack pointer
// After checking the implementation of queue in Effekt, I realized that it also works as a stack, so I will use it as a stack
var stack in global = emptyQueue[Int](32) // Stack with 16 levels. Each level is 16-bit that is 2 bytes, so 32 bytes
var last_key_update_time in global = getNow()
var last_instruction_run_time in global = getNow()
var last_display_update_time in global = getNow()
var last_timer_update in global = getNow()
new CPU {
def initCPU(rom: ByteArray) = {
ram.init(rom)
r.clear()
}
def cycleCPU() = {
val currentTime = getNow()
var key: Int = -1 // Key pressed
if (currentTime - last_key_update_time >= 1) {
val key_ = r.getKeyPressed().getOrElse { "P" }
if (key_ != "P") {
key = convertKey(key_)
}
last_key_update_time = currentTime
}
if (currentTime - last_instruction_run_time >= 2) { // ~500Hz
val h = ram.getAddr(pc)
val l = ram.getAddr(pc + 1)
val inst = bitwiseOr(bitwiseShl(h.toInt(), 8), l.toInt())
// Decode
val opcode = bitwiseShr(bitwiseAnd(inst, 61440), 12)
val nnn = bitwiseAnd(inst, 4095)
val nn = bitwiseAnd(inst, 255)
val n = bitwiseAnd(inst, 15)
val x = bitwiseAnd(bitwiseShr(inst, 8), 15)
val y = bitwiseAnd(bitwiseShr(inst, 4), 15)
// Execute
opcode match {
case 0 => {
nn match {
// Clear the screen
case 224 => {
r.clear()
pc = pc + 2
}
// Return from a subroutine
case 238 => {
// pc = stack[Int].popFront[Int]().value[Int]()
pc = stack.popFront().getOrElse { 0 }
}
} else {
// 0nnn - SYS addr - Jump to a machine code routine at nnn
pc = nnn
}
}
// Jump to address NNN
case 1 => {
pc = nnn
}
// Call subroutine at NNN
case 2 => {
stack.pushFront(pc + 2)
pc = nnn
}
// Skip next instruction if VX == NN
case 3 => {
if (v.unsafeGet(x).toInt() == nn) {
pc = pc + 2
}
pc = pc + 2
}
// Skip next instruction if VX != NN
case 4 => {
if (v.unsafeGet(x).toInt() != nn) {
pc = pc + 2
}
pc = pc + 2
}
// Skip next instruction if VX == VY
case 5 => {
if (v.unsafeGet(x).toInt() == v.unsafeGet(y).toInt()) {
pc = pc + 2
}
pc = pc + 2
}
// Set VX = NN
case 6 => {
v.unsafeSet(x, nn.toByte())
pc = pc + 2
}
// Set VX = VX + NN
case 7 => {
v.unsafeSet(x, (v.unsafeGet(x).toInt() + nn).toByte())
pc = pc + 2
}
case 8 => {
n match {
// Set VX = VY
case 0 => {
v.unsafeSet(x, v.unsafeGet(y))
}
// Set VX = VX OR VY
case 1 => {
v.unsafeSet(x, bitwiseOr(v.unsafeGet(x).toInt(), v.unsafeGet(y).toInt()).toByte())
}
// Set VX = VX AND VY
case 2 => {
v.unsafeSet(x, bitwiseAnd(v.unsafeGet(x).toInt(), v.unsafeGet(y).toInt()).toByte())
}
// Set VX = VX XOR VY
case 3 => {
v.unsafeSet(x, bitwiseXor(v.unsafeGet(x).toInt(), v.unsafeGet(y).toInt()).toByte())
}
// Set VX = VX + VY, set VF = carry
case 4 => {
val sum = v.unsafeGet(x).toInt() + v.unsafeGet(y).toInt()
v.unsafeSet(x, sum.toByte())
v.unsafeSet(15, (if (sum > 255) 1 else 0).toByte())
}
// Set VX = VX - VY, set VF = NOT borrow
case 5 => {
val vx = v.unsafeGet(x).toInt()
val vy = v.unsafeGet(y).toInt()
val sub = vx - vy
v.unsafeSet(x, sub.toByte())
v.unsafeSet(15, (if (vx > vy) 1 else 0).toByte())
}
// Set VX = VX SHR 1 and VF = LSB of VX
case 6 => {
val vx = v.unsafeGet(x).toInt()
val lsb = bitwiseAnd(vx, 1)
val vx_ = bitwiseShr(vx, 1)
v.unsafeSet(x, vx_.toByte())
v.unsafeSet(15, lsb.toByte())
}
// Set VX = VY - VX, set VF = NOT borrow
case 7 => {
val vx = v.unsafeGet(x).toInt()
val vy = v.unsafeGet(y).toInt()
val sub = vy - vx
v.unsafeSet(x, sub.toByte())
v.unsafeSet(15, (if (vy > vx) 1 else 0).toByte())
}
// Set VX = VX SHL 1 and VF = MSB of VX
case 14 => {
val vx = v.unsafeGet(x).toInt()
val msb = bitwiseAnd(vx, 128)
val vx_ = vx * 2
val vf = bitwiseShr(msb, 7)
v.unsafeSet(x, vx_.toByte())
v.unsafeSet(15, vf.toByte())
}
} else {
r.log("Unknown Instruction: " ++ show(inst))
}
pc = pc + 2
}
// Skip next instruction if VX != VY
case 9 => {
if (v.unsafeGet(x).toInt() != v.unsafeGet(y).toInt()) {
pc = pc + 2
}
pc = pc + 2
}
// Set I = NNN
case 10 => {
i = nnn
pc = pc + 2
}
// Jump to location NNN + V0
case 11 => {
pc = nnn + v.unsafeGet(0).toInt()
}
// Set VX = random byte AND NN
case 12 => {
val randInt: Int = floor(random() * 255.0)
v.unsafeSet(x, bitwiseAnd(randInt, nn).toByte())
pc = pc + 2
}
// Display n-byte sprite starting at memory location I at (VX, VY), set VF = collision
case 13 => {
val vx = v.unsafeGet(x).toInt()
val vy = v.unsafeGet(y).toInt()
var collision = false
var yline = 0
while (yline < n) {
val pixel = ram.getAddr(i + yline)
var xline = 0
while (xline < 8) {
// Get if the current sprite pixel is set (1)
val spritePixel = bitwiseAnd(bitwiseShr(pixel.toInt(), 7 - xline), 1) == 1
if (spritePixel) {
val x = mod(vx + xline, 64)
val y = mod(vy + yline, 32)
// Get current screen pixel
val screenPixel = r.get(x, y)
// XOR operation
if (screenPixel == spritePixel) {
// If both pixels are on, turn it off and set collision
r.draw(x, y, "black")
collision = true
} else if (screenPixel != spritePixel) {
// If screen pixel is off and sprite pixel is on, turn it on
r.draw(x, y, "white")
}
}
xline = xline + 1
}
yline = yline + 1
}
v.unsafeSet(15, (if (collision) 1 else 0).toByte())
pc = pc + 2
}
case 14 => {
nn match {
// Skip next instruction if key with the value of VX is not pressed
case 161 => {
val vx = v.unsafeGet(x).toInt()
if (key != v.unsafeGet(x).toInt()) {
pc = pc + 4
} else {
pc = pc + 2
}
}
// Skip next instruction if key with the value of VX is pressed
case 158 => {
val vx = v.unsafeGet(x).toInt()
if (key != -1 && key == v.unsafeGet(x).toInt()) {
pc = pc + 4
} else {
pc = pc + 2
}
}
} else {
r.log("Unknown Instruction: " ++ show(inst))
}
}
case 15 => {
nn match {
// Set VX = delay timer value
case 7 => {
v.unsafeSet(x, delay)
pc = pc + 2
}
// Wait for a key press, store the value of the key in VX
case 10 => {
if (key >= 0) {
v.unsafeSet(x, key.toByte())
pc = pc + 2
}
}
// SET delay timer = VX
case 21 => {
delay = v.unsafeGet(x)
pc = pc + 2
}
// Set sound timer = VX
case 24 => {
sound = v.unsafeGet(x)
pc = pc + 2
}
// SET I = I + VX
case 30 => {
i = i + v.unsafeGet(x).toInt()
pc = pc + 2
}
// Set I = location of sprite for digit VX
case 41 => {
i = v.unsafeGet(x).toInt() * 5
pc = pc + 2
}
// Store BCD representation of VX in memory locations I, I+1, and I+2
case 51 => {
val vx = v.unsafeGet(x).toInt()
ram.setAddr(i, (vx / 100).toByte())
ram.setAddr(i + 1, mod((vx / 10), 10).toByte())
ram.setAddr(i + 2, mod(vx, 10).toByte())
pc = pc + 2
}
// Store registers V0 through VX in memory starting at location I
case 85 => {
var index = 0
while (index <= x) {
ram.setAddr(i + index, v.unsafeGet(index))
index = index + 1
}
// i = i + x + 1
pc = pc + 2
}
// Read registers V0 through VX from memory starting at location I
case 101 => {
var index = 0
while (index <= x) {
v.unsafeSet(index, ram.getAddr(i + index))
index = index + 1
}
// i = i + x + 1
pc = pc + 2
}
} else {
r.log("Unknown Instruction: " ++ show(inst))
}
}
} else {
r.log("Unknown Instruction: " ++ show(inst))
}
last_instruction_run_time = getNow()
// Update timers if needed
if (currentTime - last_timer_update >= 16) { // 60Hz timer updates
// Update timers
if (delay.toInt() > 0) {
delay = (delay.toInt() - 1).toByte()
}
if (sound.toInt() > 0) {
sound = (sound.toInt() - 1).toByte()
r.beep()
} else {
r.stopBeep()
}
last_timer_update = currentTime
}
}
}
}
}
|