summaryrefslogtreecommitdiff
path: root/node_modules/locutus/php/_helpers/_bc.js
diff options
context:
space:
mode:
Diffstat (limited to 'node_modules/locutus/php/_helpers/_bc.js')
-rw-r--r--node_modules/locutus/php/_helpers/_bc.js1258
1 files changed, 1258 insertions, 0 deletions
diff --git a/node_modules/locutus/php/_helpers/_bc.js b/node_modules/locutus/php/_helpers/_bc.js
new file mode 100644
index 0000000..ac27204
--- /dev/null
+++ b/node_modules/locutus/php/_helpers/_bc.js
@@ -0,0 +1,1258 @@
+'use strict';
+
+module.exports = function _bc() {
+ // eslint-disable-line camelcase
+ // discuss at: http://locutus.io/php/_helpers/_bc
+ // original by: lmeyrick (https://sourceforge.net/projects/bcmath-js/)
+ // improved by: Brett Zamir (http://brett-zamir.me)
+ // example 1: var $bc = _bc()
+ // example 1: var $result = $bc.PLUS
+ // returns 1: '+'
+
+ /**
+ * BC Math Library for Javascript
+ * Ported from the PHP5 bcmath extension source code,
+ * which uses the Libbcmath package...
+ * Copyright (C) 1991, 1992, 1993, 1994, 1997 Free Software Foundation, Inc.
+ * Copyright (C) 2000 Philip A. Nelson
+ * The Free Software Foundation, Inc.
+ * 59 Temple Place, Suite 330
+ * Boston, MA 02111-1307 USA.
+ * e-mail: philnelson@acm.org
+ * us-mail: Philip A. Nelson
+ * Computer Science Department, 9062
+ * Western Washington University
+ * Bellingham, WA 98226-9062
+ *
+ * bcmath-js homepage:
+ *
+ * This code is covered under the LGPL licence, and can be used however you want :)
+ * Be kind and share any decent code changes.
+ */
+
+ /**
+ * Binary Calculator (BC) Arbitrary Precision Mathematics Lib v0.10 (LGPL)
+ * Copy of Libbcmath included in PHP5 src
+ *
+ * Note: this is just the shared library file and does not include the php-style functions.
+ * use bcmath{-min}.js for functions like bcadd, bcsub etc.
+ *
+ * Feel free to use how-ever you want, just email any bug-fixes/improvements
+ * to the sourceforge project:
+ *
+ *
+ * Ported from the PHP5 bcmath extension source code,
+ * which uses the Libbcmath package...
+ * Copyright (C) 1991, 1992, 1993, 1994, 1997 Free Software Foundation, Inc.
+ * Copyright (C) 2000 Philip A. Nelson
+ * The Free Software Foundation, Inc.
+ * 59 Temple Place, Suite 330
+ * Boston, MA 02111-1307 USA.
+ * e-mail: philnelson@acm.org
+ * us-mail: Philip A. Nelson
+ * Computer Science Department, 9062
+ * Western Washington University
+ * Bellingham, WA 98226-9062
+ */
+
+ var Libbcmath = {
+ PLUS: '+',
+ MINUS: '-',
+ BASE: 10,
+ // must be 10 (for now)
+ scale: 0,
+ // default scale
+ /**
+ * Basic number structure
+ */
+ bc_num: function bc_num() {
+ this.n_sign = null; // sign
+ this.n_len = null; // (int) The number of digits before the decimal point.
+ this.n_scale = null; // (int) The number of digits after the decimal point.
+ // this.n_refs = null; // (int) The number of pointers to this number.
+ // this.n_text = null; // ?? Linked list for available list.
+ this.n_value = null; // array as value, where 1.23 = [1,2,3]
+ this.toString = function () {
+ var r, tmp;
+ tmp = this.n_value.join('');
+
+ // add minus sign (if applicable) then add the integer part
+ r = (this.n_sign === Libbcmath.PLUS ? '' : this.n_sign) + tmp.substr(0, this.n_len);
+
+ // if decimal places, add a . and the decimal part
+ if (this.n_scale > 0) {
+ r += '.' + tmp.substr(this.n_len, this.n_scale);
+ }
+ return r;
+ };
+ },
+
+ /**
+ * Base add function
+ *
+ // Here is the full add routine that takes care of negative numbers.
+ // N1 is added to N2 and the result placed into RESULT. SCALE_MIN
+ // is the minimum scale for the result.
+ *
+ * @param {bc_num} n1
+ * @param {bc_num} n2
+ * @param {int} scaleMin
+ * @return bc_num
+ */
+ bc_add: function bc_add(n1, n2, scaleMin) {
+ var sum, cmpRes, resScale;
+
+ if (n1.n_sign === n2.n_sign) {
+ sum = Libbcmath._bc_do_add(n1, n2, scaleMin);
+ sum.n_sign = n1.n_sign;
+ } else {
+ // subtraction must be done.
+ cmpRes = Libbcmath._bc_do_compare(n1, n2, false, false); // Compare magnitudes.
+ switch (cmpRes) {
+ case -1:
+ // n1 is less than n2, subtract n1 from n2.
+ sum = Libbcmath._bc_do_sub(n2, n1, scaleMin);
+ sum.n_sign = n2.n_sign;
+ break;
+
+ case 0:
+ // They are equal! return zero with the correct scale!
+ resScale = Libbcmath.MAX(scaleMin, Libbcmath.MAX(n1.n_scale, n2.n_scale));
+ sum = Libbcmath.bc_new_num(1, resScale);
+ Libbcmath.memset(sum.n_value, 0, 0, resScale + 1);
+ break;
+
+ case 1:
+ // n2 is less than n1, subtract n2 from n1.
+ sum = Libbcmath._bc_do_sub(n1, n2, scaleMin);
+ sum.n_sign = n1.n_sign;
+ }
+ }
+ return sum;
+ },
+
+ /**
+ * This is the "user callable" routine to compare numbers N1 and N2.
+ * @param {bc_num} n1
+ * @param {bc_num} n2
+ * @return int -1, 0, 1 (n1 < n2, ===, n1 > n2)
+ */
+ bc_compare: function bc_compare(n1, n2) {
+ return Libbcmath._bc_do_compare(n1, n2, true, false);
+ },
+
+ _one_mult: function _one_mult(num, nPtr, size, digit, result, rPtr) {
+ var carry, value; // int
+ var nptr, rptr; // int pointers
+ if (digit === 0) {
+ Libbcmath.memset(result, 0, 0, size); // memset (result, 0, size);
+ } else {
+ if (digit === 1) {
+ Libbcmath.memcpy(result, rPtr, num, nPtr, size); // memcpy (result, num, size);
+ } else {
+ // Initialize
+ nptr = nPtr + size - 1; // nptr = (unsigned char *) (num+size-1);
+ rptr = rPtr + size - 1; // rptr = (unsigned char *) (result+size-1);
+ carry = 0;
+
+ while (size-- > 0) {
+ value = num[nptr--] * digit + carry; // value = *nptr-- * digit + carry;
+ result[rptr--] = value % Libbcmath.BASE; // @CHECK cint //*rptr-- = value % BASE;
+ carry = Math.floor(value / Libbcmath.BASE); // @CHECK cint //carry = value / BASE;
+ }
+
+ if (carry !== 0) {
+ result[rptr] = carry;
+ }
+ }
+ }
+ },
+
+ bc_divide: function bc_divide(n1, n2, scale) {
+ // var quot // bc_num return
+ var qval; // bc_num
+ var num1, num2; // string
+ var ptr1, ptr2, n2ptr, qptr; // int pointers
+ var scale1, val; // int
+ var len1, len2, scale2, qdigits, extra, count; // int
+ var qdig, qguess, borrow, carry; // int
+ var mval; // string
+ var zero; // char
+ var norm; // int
+ // var ptrs // return object from one_mul
+ // Test for divide by zero. (return failure)
+ if (Libbcmath.bc_is_zero(n2)) {
+ return -1;
+ }
+
+ // Test for zero divide by anything (return zero)
+ if (Libbcmath.bc_is_zero(n1)) {
+ return Libbcmath.bc_new_num(1, scale);
+ }
+
+ /* Test for n1 equals n2 (return 1 as n1 nor n2 are zero)
+ if (Libbcmath.bc_compare(n1, n2, Libbcmath.MAX(n1.n_scale, n2.n_scale)) === 0) {
+ quot=Libbcmath.bc_new_num(1, scale);
+ quot.n_value[0] = 1;
+ return quot;
+ }
+ */
+
+ // Test for divide by 1. If it is we must truncate.
+ // @todo: check where scale > 0 too.. can't see why not
+ // (ie bc_is_zero - add bc_is_one function)
+ if (n2.n_scale === 0) {
+ if (n2.n_len === 1 && n2.n_value[0] === 1) {
+ qval = Libbcmath.bc_new_num(n1.n_len, scale); // qval = bc_new_num (n1->n_len, scale);
+ qval.n_sign = n1.n_sign === n2.n_sign ? Libbcmath.PLUS : Libbcmath.MINUS;
+ // memset (&qval->n_value[n1->n_len],0,scale):
+ Libbcmath.memset(qval.n_value, n1.n_len, 0, scale);
+ // memcpy (qval->n_value, n1->n_value, n1->n_len + MIN(n1->n_scale,scale)):
+ Libbcmath.memcpy(qval.n_value, 0, n1.n_value, 0, n1.n_len + Libbcmath.MIN(n1.n_scale, scale));
+ // can we return here? not in c src, but can't see why-not.
+ // return qval;
+ }
+ }
+
+ /* Set up the divide. Move the decimal point on n1 by n2's scale.
+ Remember, zeros on the end of num2 are wasted effort for dividing. */
+ scale2 = n2.n_scale; // scale2 = n2->n_scale;
+ n2ptr = n2.n_len + scale2 - 1; // n2ptr = (unsigned char *) n2.n_value+n2.n_len+scale2-1;
+ while (scale2 > 0 && n2.n_value[n2ptr--] === 0) {
+ scale2--;
+ }
+
+ len1 = n1.n_len + scale2;
+ scale1 = n1.n_scale - scale2;
+ if (scale1 < scale) {
+ extra = scale - scale1;
+ } else {
+ extra = 0;
+ }
+
+ // num1 = (unsigned char *) safe_emalloc (1, n1.n_len+n1.n_scale, extra+2):
+ num1 = Libbcmath.safe_emalloc(1, n1.n_len + n1.n_scale, extra + 2);
+ if (num1 === null) {
+ Libbcmath.bc_out_of_memory();
+ }
+ // memset (num1, 0, n1->n_len+n1->n_scale+extra+2):
+ Libbcmath.memset(num1, 0, 0, n1.n_len + n1.n_scale + extra + 2);
+ // memcpy (num1+1, n1.n_value, n1.n_len+n1.n_scale):
+ Libbcmath.memcpy(num1, 1, n1.n_value, 0, n1.n_len + n1.n_scale);
+ // len2 = n2->n_len + scale2:
+ len2 = n2.n_len + scale2;
+ // num2 = (unsigned char *) safe_emalloc (1, len2, 1):
+ num2 = Libbcmath.safe_emalloc(1, len2, 1);
+ if (num2 === null) {
+ Libbcmath.bc_out_of_memory();
+ }
+ // memcpy (num2, n2.n_value, len2):
+ Libbcmath.memcpy(num2, 0, n2.n_value, 0, len2);
+ // *(num2+len2) = 0:
+ num2[len2] = 0;
+ // n2ptr = num2:
+ n2ptr = 0;
+ // while (*n2ptr === 0):
+ while (num2[n2ptr] === 0) {
+ n2ptr++;
+ len2--;
+ }
+
+ // Calculate the number of quotient digits.
+ if (len2 > len1 + scale) {
+ qdigits = scale + 1;
+ zero = true;
+ } else {
+ zero = false;
+ if (len2 > len1) {
+ qdigits = scale + 1; // One for the zero integer part.
+ } else {
+ qdigits = len1 - len2 + scale + 1;
+ }
+ }
+
+ // Allocate and zero the storage for the quotient.
+ // qval = bc_new_num (qdigits-scale,scale);
+ qval = Libbcmath.bc_new_num(qdigits - scale, scale);
+ // memset (qval->n_value, 0, qdigits);
+ Libbcmath.memset(qval.n_value, 0, 0, qdigits);
+ // Allocate storage for the temporary storage mval.
+ // mval = (unsigned char *) safe_emalloc (1, len2, 1);
+ mval = Libbcmath.safe_emalloc(1, len2, 1);
+ if (mval === null) {
+ Libbcmath.bc_out_of_memory();
+ }
+
+ // Now for the full divide algorithm.
+ if (!zero) {
+ // Normalize
+ // norm = Libbcmath.cint(10 / (Libbcmath.cint(n2.n_value[n2ptr]) + 1));
+ // norm = 10 / ((int)*n2ptr + 1)
+ norm = Math.floor(10 / (n2.n_value[n2ptr] + 1)); // norm = 10 / ((int)*n2ptr + 1);
+ if (norm !== 1) {
+ // Libbcmath._one_mult(num1, len1+scale1+extra+1, norm, num1);
+ Libbcmath._one_mult(num1, 0, len1 + scale1 + extra + 1, norm, num1, 0);
+ // Libbcmath._one_mult(n2ptr, len2, norm, n2ptr);
+ Libbcmath._one_mult(n2.n_value, n2ptr, len2, norm, n2.n_value, n2ptr);
+ // @todo: Check: Is the pointer affected by the call? if so,
+ // maybe need to adjust points on return?
+ }
+
+ // Initialize divide loop.
+ qdig = 0;
+ if (len2 > len1) {
+ qptr = len2 - len1; // qptr = (unsigned char *) qval.n_value+len2-len1;
+ } else {
+ qptr = 0; // qptr = (unsigned char *) qval.n_value;
+ }
+
+ // Loop
+ while (qdig <= len1 + scale - len2) {
+ // Calculate the quotient digit guess.
+ if (n2.n_value[n2ptr] === num1[qdig]) {
+ qguess = 9;
+ } else {
+ qguess = Math.floor((num1[qdig] * 10 + num1[qdig + 1]) / n2.n_value[n2ptr]);
+ }
+ // Test qguess.
+
+ if (n2.n_value[n2ptr + 1] * qguess > (num1[qdig] * 10 + num1[qdig + 1] - n2.n_value[n2ptr] * qguess) * 10 + num1[qdig + 2]) {
+ qguess--;
+ // And again.
+ if (n2.n_value[n2ptr + 1] * qguess > (num1[qdig] * 10 + num1[qdig + 1] - n2.n_value[n2ptr] * qguess) * 10 + num1[qdig + 2]) {
+ qguess--;
+ }
+ }
+
+ // Multiply and subtract.
+ borrow = 0;
+ if (qguess !== 0) {
+ mval[0] = 0; //* mval = 0; // @CHECK is this to fix ptr2 < 0?
+ // _one_mult (n2ptr, len2, qguess, mval+1); // @CHECK
+ Libbcmath._one_mult(n2.n_value, n2ptr, len2, qguess, mval, 1);
+ ptr1 = qdig + len2; // (unsigned char *) num1+qdig+len2;
+ ptr2 = len2; // (unsigned char *) mval+len2;
+ // @todo: CHECK: Does a negative pointer return null?
+ // ptr2 can be < 0 here as ptr1 = len2, thus count < len2+1 will always fail ?
+ for (count = 0; count < len2 + 1; count++) {
+ if (ptr2 < 0) {
+ // val = Libbcmath.cint(num1[ptr1]) - 0 - borrow;
+ // val = (int) *ptr1 - (int) *ptr2-- - borrow;
+ val = num1[ptr1] - 0 - borrow; // val = (int) *ptr1 - (int) *ptr2-- - borrow;
+ } else {
+ // val = Libbcmath.cint(num1[ptr1]) - Libbcmath.cint(mval[ptr2--]) - borrow;
+ // val = (int) *ptr1 - (int) *ptr2-- - borrow;
+ // val = (int) *ptr1 - (int) *ptr2-- - borrow;
+ val = num1[ptr1] - mval[ptr2--] - borrow;
+ }
+ if (val < 0) {
+ val += 10;
+ borrow = 1;
+ } else {
+ borrow = 0;
+ }
+ num1[ptr1--] = val;
+ }
+ }
+
+ // Test for negative result.
+ if (borrow === 1) {
+ qguess--;
+ ptr1 = qdig + len2; // (unsigned char *) num1+qdig+len2;
+ ptr2 = len2 - 1; // (unsigned char *) n2ptr+len2-1;
+ carry = 0;
+ for (count = 0; count < len2; count++) {
+ if (ptr2 < 0) {
+ // val = Libbcmath.cint(num1[ptr1]) + 0 + carry;
+ // val = (int) *ptr1 + (int) *ptr2-- + carry;
+ // val = (int) *ptr1 + (int) *ptr2-- + carry;
+ val = num1[ptr1] + 0 + carry;
+ } else {
+ // val = Libbcmath.cint(num1[ptr1]) + Libbcmath.cint(n2.n_value[ptr2--]) + carry;
+ // val = (int) *ptr1 + (int) *ptr2-- + carry;
+ // val = (int) *ptr1 + (int) *ptr2-- + carry;
+ val = num1[ptr1] + n2.n_value[ptr2--] + carry;
+ }
+ if (val > 9) {
+ val -= 10;
+ carry = 1;
+ } else {
+ carry = 0;
+ }
+ num1[ptr1--] = val; //* ptr1-- = val;
+ }
+ if (carry === 1) {
+ // num1[ptr1] = Libbcmath.cint((num1[ptr1] + 1) % 10);
+ // *ptr1 = (*ptr1 + 1) % 10; // @CHECK
+ // *ptr1 = (*ptr1 + 1) % 10; // @CHECK
+ num1[ptr1] = (num1[ptr1] + 1) % 10;
+ }
+ }
+
+ // We now know the quotient digit.
+ qval.n_value[qptr++] = qguess; //* qptr++ = qguess;
+ qdig++;
+ }
+ }
+
+ // Clean up and return the number.
+ qval.n_sign = n1.n_sign === n2.n_sign ? Libbcmath.PLUS : Libbcmath.MINUS;
+ if (Libbcmath.bc_is_zero(qval)) {
+ qval.n_sign = Libbcmath.PLUS;
+ }
+ Libbcmath._bc_rm_leading_zeros(qval);
+
+ return qval;
+
+ // return 0; // Everything is OK.
+ },
+
+ MUL_BASE_DIGITS: 80,
+ MUL_SMALL_DIGITS: 80 / 4,
+ // #define MUL_SMALL_DIGITS mul_base_digits/4
+
+ /* The multiply routine. N2 times N1 is put int PROD with the scale of
+ the result being MIN(N2 scale+N1 scale, MAX (SCALE, N2 scale, N1 scale)).
+ */
+ /**
+ * @param n1 bc_num
+ * @param n2 bc_num
+ * @param scale [int] optional
+ */
+ bc_multiply: function bc_multiply(n1, n2, scale) {
+ var pval; // bc_num
+ var len1, len2; // int
+ var fullScale, prodScale; // int
+ // Initialize things.
+ len1 = n1.n_len + n1.n_scale;
+ len2 = n2.n_len + n2.n_scale;
+ fullScale = n1.n_scale + n2.n_scale;
+ prodScale = Libbcmath.MIN(fullScale, Libbcmath.MAX(scale, Libbcmath.MAX(n1.n_scale, n2.n_scale)));
+
+ // pval = Libbcmath.bc_init_num(); // allow pass by ref
+ // Do the multiply
+ pval = Libbcmath._bc_rec_mul(n1, len1, n2, len2, fullScale);
+
+ // Assign to prod and clean up the number.
+ pval.n_sign = n1.n_sign === n2.n_sign ? Libbcmath.PLUS : Libbcmath.MINUS;
+ // pval.n_value = pval.nPtr;
+ pval.n_len = len2 + len1 + 1 - fullScale;
+ pval.n_scale = prodScale;
+ Libbcmath._bc_rm_leading_zeros(pval);
+ if (Libbcmath.bc_is_zero(pval)) {
+ pval.n_sign = Libbcmath.PLUS;
+ }
+ // bc_free_num (prod);
+ return pval;
+ },
+
+ new_sub_num: function new_sub_num(length, scale, value) {
+ var ptr = arguments.length > 3 && arguments[3] !== undefined ? arguments[3] : 0;
+
+ var temp = new Libbcmath.bc_num(); // eslint-disable-line new-cap
+ temp.n_sign = Libbcmath.PLUS;
+ temp.n_len = length;
+ temp.n_scale = scale;
+ temp.n_value = Libbcmath.safe_emalloc(1, length + scale, 0);
+ Libbcmath.memcpy(temp.n_value, 0, value, ptr, length + scale);
+ return temp;
+ },
+
+ _bc_simp_mul: function _bc_simp_mul(n1, n1len, n2, n2len, fullScale) {
+ var prod; // bc_num
+ var n1ptr, n2ptr, pvptr; // char *n1ptr, *n2ptr, *pvptr;
+ var n1end, n2end; // char *n1end, *n2end; // To the end of n1 and n2.
+ var indx, sum, prodlen; // int indx, sum, prodlen;
+ prodlen = n1len + n2len + 1;
+
+ prod = Libbcmath.bc_new_num(prodlen, 0);
+
+ n1end = n1len - 1; // (char *) (n1->n_value + n1len - 1);
+ n2end = n2len - 1; // (char *) (n2->n_value + n2len - 1);
+ pvptr = prodlen - 1; // (char *) ((*prod)->n_value + prodlen - 1);
+ sum = 0;
+
+ // Here is the loop...
+ for (indx = 0; indx < prodlen - 1; indx++) {
+ // (char *) (n1end - MAX(0, indx-n2len+1));
+ n1ptr = n1end - Libbcmath.MAX(0, indx - n2len + 1);
+ // (char *) (n2end - MIN(indx, n2len-1));
+ n2ptr = n2end - Libbcmath.MIN(indx, n2len - 1);
+ while (n1ptr >= 0 && n2ptr <= n2end) {
+ // sum += *n1ptr-- * *n2ptr++;
+ sum += n1.n_value[n1ptr--] * n2.n_value[n2ptr++];
+ }
+ //* pvptr-- = sum % BASE;
+ prod.n_value[pvptr--] = Math.floor(sum % Libbcmath.BASE);
+ sum = Math.floor(sum / Libbcmath.BASE); // sum = sum / BASE;
+ }
+ prod.n_value[pvptr] = sum; //* pvptr = sum;
+ return prod;
+ },
+
+ /* A special adder/subtractor for the recursive divide and conquer
+ multiply algorithm. Note: if sub is called, accum must
+ be larger that what is being subtracted. Also, accum and val
+ must have n_scale = 0. (e.g. they must look like integers. *) */
+ _bc_shift_addsub: function _bc_shift_addsub(accum, val, shift, sub) {
+ var accp, valp; // signed char *accp, *valp;
+ var count, carry; // int count, carry;
+ count = val.n_len;
+ if (val.n_value[0] === 0) {
+ count--;
+ }
+
+ // assert (accum->n_len+accum->n_scale >= shift+count);
+ if (accum.n_len + accum.n_scale < shift + count) {
+ throw new Error('len + scale < shift + count'); // ?? I think that's what assert does :)
+ }
+
+ // Set up pointers and others
+ // (signed char *)(accum->n_value + accum->n_len + accum->n_scale - shift - 1);
+ accp = accum.n_len + accum.n_scale - shift - 1;
+ valp = val.n_len - 1; // (signed char *)(val->n_value + val->n_len - 1);
+ carry = 0;
+ if (sub) {
+ // Subtraction, carry is really borrow.
+ while (count--) {
+ accum.n_value[accp] -= val.n_value[valp--] + carry; //* accp -= *valp-- + carry;
+ if (accum.n_value[accp] < 0) {
+ // if (*accp < 0)
+ carry = 1;
+ accum.n_value[accp--] += Libbcmath.BASE; //* accp-- += BASE;
+ } else {
+ carry = 0;
+ accp--;
+ }
+ }
+ while (carry) {
+ accum.n_value[accp] -= carry; //* accp -= carry;
+ if (accum.n_value[accp] < 0) {
+ // if (*accp < 0)
+ accum.n_value[accp--] += Libbcmath.BASE; // *accp-- += BASE;
+ } else {
+ carry = 0;
+ }
+ }
+ } else {
+ // Addition
+ while (count--) {
+ accum.n_value[accp] += val.n_value[valp--] + carry; //* accp += *valp-- + carry;
+ if (accum.n_value[accp] > Libbcmath.BASE - 1) {
+ // if (*accp > (BASE-1))
+ carry = 1;
+ accum.n_value[accp--] -= Libbcmath.BASE; //* accp-- -= BASE;
+ } else {
+ carry = 0;
+ accp--;
+ }
+ }
+ while (carry) {
+ accum.n_value[accp] += carry; //* accp += carry;
+ if (accum.n_value[accp] > Libbcmath.BASE - 1) {
+ // if (*accp > (BASE-1))
+ accum.n_value[accp--] -= Libbcmath.BASE; //* accp-- -= BASE;
+ } else {
+ carry = 0;
+ }
+ }
+ }
+ return true; // accum is the pass-by-reference return
+ },
+
+ /* Recursive divide and conquer multiply algorithm.
+ based on
+ Let u = u0 + u1*(b^n)
+ Let v = v0 + v1*(b^n)
+ Then uv = (B^2n+B^n)*u1*v1 + B^n*(u1-u0)*(v0-v1) + (B^n+1)*u0*v0
+ B is the base of storage, number of digits in u1,u0 close to equal.
+ */
+ _bc_rec_mul: function _bc_rec_mul(u, ulen, v, vlen, fullScale) {
+ var prod; // @return
+ var u0, u1, v0, v1; // bc_num
+ // var u0len,
+ // var v0len // int
+ var m1, m2, m3, d1, d2; // bc_num
+ var n, prodlen, m1zero; // int
+ var d1len, d2len; // int
+ // Base case?
+ if (ulen + vlen < Libbcmath.MUL_BASE_DIGITS || ulen < Libbcmath.MUL_SMALL_DIGITS || vlen < Libbcmath.MUL_SMALL_DIGITS) {
+ return Libbcmath._bc_simp_mul(u, ulen, v, vlen, fullScale);
+ }
+
+ // Calculate n -- the u and v split point in digits.
+ n = Math.floor((Libbcmath.MAX(ulen, vlen) + 1) / 2);
+
+ // Split u and v.
+ if (ulen < n) {
+ u1 = Libbcmath.bc_init_num(); // u1 = bc_copy_num (BCG(_zero_));
+ u0 = Libbcmath.new_sub_num(ulen, 0, u.n_value);
+ } else {
+ u1 = Libbcmath.new_sub_num(ulen - n, 0, u.n_value);
+ u0 = Libbcmath.new_sub_num(n, 0, u.n_value, ulen - n);
+ }
+ if (vlen < n) {
+ v1 = Libbcmath.bc_init_num(); // bc_copy_num (BCG(_zero_));
+ v0 = Libbcmath.new_sub_num(vlen, 0, v.n_value);
+ } else {
+ v1 = Libbcmath.new_sub_num(vlen - n, 0, v.n_value);
+ v0 = Libbcmath.new_sub_num(n, 0, v.n_value, vlen - n);
+ }
+ Libbcmath._bc_rm_leading_zeros(u1);
+ Libbcmath._bc_rm_leading_zeros(u0);
+ // var u0len = u0.n_len
+ Libbcmath._bc_rm_leading_zeros(v1);
+ Libbcmath._bc_rm_leading_zeros(v0);
+ // var v0len = v0.n_len
+
+ m1zero = Libbcmath.bc_is_zero(u1) || Libbcmath.bc_is_zero(v1);
+
+ // Calculate sub results ...
+ d1 = Libbcmath.bc_init_num(); // needed?
+ d2 = Libbcmath.bc_init_num(); // needed?
+ d1 = Libbcmath.bc_sub(u1, u0, 0);
+ d1len = d1.n_len;
+
+ d2 = Libbcmath.bc_sub(v0, v1, 0);
+ d2len = d2.n_len;
+
+ // Do recursive multiplies and shifted adds.
+ if (m1zero) {
+ m1 = Libbcmath.bc_init_num(); // bc_copy_num (BCG(_zero_));
+ } else {
+ // m1 = Libbcmath.bc_init_num(); //allow pass-by-ref
+ m1 = Libbcmath._bc_rec_mul(u1, u1.n_len, v1, v1.n_len, 0);
+ }
+ if (Libbcmath.bc_is_zero(d1) || Libbcmath.bc_is_zero(d2)) {
+ m2 = Libbcmath.bc_init_num(); // bc_copy_num (BCG(_zero_));
+ } else {
+ // m2 = Libbcmath.bc_init_num(); //allow pass-by-ref
+ m2 = Libbcmath._bc_rec_mul(d1, d1len, d2, d2len, 0);
+ }
+
+ if (Libbcmath.bc_is_zero(u0) || Libbcmath.bc_is_zero(v0)) {
+ m3 = Libbcmath.bc_init_num(); // bc_copy_num (BCG(_zero_));
+ } else {
+ // m3 = Libbcmath.bc_init_num(); //allow pass-by-ref
+ m3 = Libbcmath._bc_rec_mul(u0, u0.n_len, v0, v0.n_len, 0);
+ }
+
+ // Initialize product
+ prodlen = ulen + vlen + 1;
+ prod = Libbcmath.bc_new_num(prodlen, 0);
+
+ if (!m1zero) {
+ Libbcmath._bc_shift_addsub(prod, m1, 2 * n, 0);
+ Libbcmath._bc_shift_addsub(prod, m1, n, 0);
+ }
+ Libbcmath._bc_shift_addsub(prod, m3, n, 0);
+ Libbcmath._bc_shift_addsub(prod, m3, 0, 0);
+ Libbcmath._bc_shift_addsub(prod, m2, n, d1.n_sign !== d2.n_sign);
+
+ return prod;
+ // Now clean up!
+ // bc_free_num (&u1);
+ // bc_free_num (&u0);
+ // bc_free_num (&v1);
+ // bc_free_num (&m1);
+ // bc_free_num (&v0);
+ // bc_free_num (&m2);
+ // bc_free_num (&m3);
+ // bc_free_num (&d1);
+ // bc_free_num (&d2);
+ },
+
+ /**
+ *
+ * @param {bc_num} n1
+ * @param {bc_num} n2
+ * @param {boolean} useSign
+ * @param {boolean} ignoreLast
+ * @return -1, 0, 1 (see bc_compare)
+ */
+ _bc_do_compare: function _bc_do_compare(n1, n2, useSign, ignoreLast) {
+ var n1ptr, n2ptr; // int
+ var count; // int
+ // First, compare signs.
+ if (useSign && n1.n_sign !== n2.n_sign) {
+ if (n1.n_sign === Libbcmath.PLUS) {
+ return 1; // Positive N1 > Negative N2
+ } else {
+ return -1; // Negative N1 < Positive N1
+ }
+ }
+
+ // Now compare the magnitude.
+ if (n1.n_len !== n2.n_len) {
+ if (n1.n_len > n2.n_len) {
+ // Magnitude of n1 > n2.
+ if (!useSign || n1.n_sign === Libbcmath.PLUS) {
+ return 1;
+ } else {
+ return -1;
+ }
+ } else {
+ // Magnitude of n1 < n2.
+ if (!useSign || n1.n_sign === Libbcmath.PLUS) {
+ return -1;
+ } else {
+ return 1;
+ }
+ }
+ }
+
+ /* If we get here, they have the same number of integer digits.
+ check the integer part and the equal length part of the fraction. */
+ count = n1.n_len + Math.min(n1.n_scale, n2.n_scale);
+ n1ptr = 0;
+ n2ptr = 0;
+
+ while (count > 0 && n1.n_value[n1ptr] === n2.n_value[n2ptr]) {
+ n1ptr++;
+ n2ptr++;
+ count--;
+ }
+
+ if (ignoreLast && count === 1 && n1.n_scale === n2.n_scale) {
+ return 0;
+ }
+
+ if (count !== 0) {
+ if (n1.n_value[n1ptr] > n2.n_value[n2ptr]) {
+ // Magnitude of n1 > n2.
+ if (!useSign || n1.n_sign === Libbcmath.PLUS) {
+ return 1;
+ } else {
+ return -1;
+ }
+ } else {
+ // Magnitude of n1 < n2.
+ if (!useSign || n1.n_sign === Libbcmath.PLUS) {
+ return -1;
+ } else {
+ return 1;
+ }
+ }
+ }
+
+ // They are equal up to the last part of the equal part of the fraction.
+ if (n1.n_scale !== n2.n_scale) {
+ if (n1.n_scale > n2.n_scale) {
+ for (count = n1.n_scale - n2.n_scale; count > 0; count--) {
+ if (n1.n_value[n1ptr++] !== 0) {
+ // Magnitude of n1 > n2.
+ if (!useSign || n1.n_sign === Libbcmath.PLUS) {
+ return 1;
+ } else {
+ return -1;
+ }
+ }
+ }
+ } else {
+ for (count = n2.n_scale - n1.n_scale; count > 0; count--) {
+ if (n2.n_value[n2ptr++] !== 0) {
+ // Magnitude of n1 < n2.
+ if (!useSign || n1.n_sign === Libbcmath.PLUS) {
+ return -1;
+ } else {
+ return 1;
+ }
+ }
+ }
+ }
+ }
+
+ // They must be equal!
+ return 0;
+ },
+
+ /* Here is the full subtract routine that takes care of negative numbers.
+ N2 is subtracted from N1 and the result placed in RESULT. SCALE_MIN
+ is the minimum scale for the result. */
+ bc_sub: function bc_sub(n1, n2, scaleMin) {
+ var diff; // bc_num
+ var cmpRes, resScale; // int
+ if (n1.n_sign !== n2.n_sign) {
+ diff = Libbcmath._bc_do_add(n1, n2, scaleMin);
+ diff.n_sign = n1.n_sign;
+ } else {
+ // subtraction must be done.
+ // Compare magnitudes.
+ cmpRes = Libbcmath._bc_do_compare(n1, n2, false, false);
+ switch (cmpRes) {
+ case -1:
+ // n1 is less than n2, subtract n1 from n2.
+ diff = Libbcmath._bc_do_sub(n2, n1, scaleMin);
+ diff.n_sign = n2.n_sign === Libbcmath.PLUS ? Libbcmath.MINUS : Libbcmath.PLUS;
+ break;
+ case 0:
+ // They are equal! return zero!
+ resScale = Libbcmath.MAX(scaleMin, Libbcmath.MAX(n1.n_scale, n2.n_scale));
+ diff = Libbcmath.bc_new_num(1, resScale);
+ Libbcmath.memset(diff.n_value, 0, 0, resScale + 1);
+ break;
+ case 1:
+ // n2 is less than n1, subtract n2 from n1.
+ diff = Libbcmath._bc_do_sub(n1, n2, scaleMin);
+ diff.n_sign = n1.n_sign;
+ break;
+ }
+ }
+
+ // Clean up and return.
+ // bc_free_num (result);
+ //* result = diff;
+ return diff;
+ },
+
+ _bc_do_add: function _bc_do_add(n1, n2, scaleMin) {
+ var sum; // bc_num
+ var sumScale, sumDigits; // int
+ var n1ptr, n2ptr, sumptr; // int
+ var carry, n1bytes, n2bytes; // int
+ var tmp; // int
+
+ // Prepare sum.
+ sumScale = Libbcmath.MAX(n1.n_scale, n2.n_scale);
+ sumDigits = Libbcmath.MAX(n1.n_len, n2.n_len) + 1;
+ sum = Libbcmath.bc_new_num(sumDigits, Libbcmath.MAX(sumScale, scaleMin));
+
+ // Start with the fraction part. Initialize the pointers.
+ n1bytes = n1.n_scale;
+ n2bytes = n2.n_scale;
+ n1ptr = n1.n_len + n1bytes - 1;
+ n2ptr = n2.n_len + n2bytes - 1;
+ sumptr = sumScale + sumDigits - 1;
+
+ // Add the fraction part. First copy the longer fraction
+ // (ie when adding 1.2345 to 1 we know .2345 is correct already) .
+ if (n1bytes !== n2bytes) {
+ if (n1bytes > n2bytes) {
+ // n1 has more dp then n2
+ while (n1bytes > n2bytes) {
+ sum.n_value[sumptr--] = n1.n_value[n1ptr--];
+ // *sumptr-- = *n1ptr--;
+ n1bytes--;
+ }
+ } else {
+ // n2 has more dp then n1
+ while (n2bytes > n1bytes) {
+ sum.n_value[sumptr--] = n2.n_value[n2ptr--];
+ // *sumptr-- = *n2ptr--;
+ n2bytes--;
+ }
+ }
+ }
+
+ // Now add the remaining fraction part and equal size integer parts.
+ n1bytes += n1.n_len;
+ n2bytes += n2.n_len;
+ carry = 0;
+ while (n1bytes > 0 && n2bytes > 0) {
+ // add the two numbers together
+ tmp = n1.n_value[n1ptr--] + n2.n_value[n2ptr--] + carry;
+ // *sumptr = *n1ptr-- + *n2ptr-- + carry;
+ // check if they are >= 10 (impossible to be more then 18)
+ if (tmp >= Libbcmath.BASE) {
+ carry = 1;
+ tmp -= Libbcmath.BASE; // yep, subtract 10, add a carry
+ } else {
+ carry = 0;
+ }
+ sum.n_value[sumptr] = tmp;
+ sumptr--;
+ n1bytes--;
+ n2bytes--;
+ }
+
+ // Now add carry the [rest of the] longer integer part.
+ if (n1bytes === 0) {
+ // n2 is a bigger number then n1
+ while (n2bytes-- > 0) {
+ tmp = n2.n_value[n2ptr--] + carry;
+ // *sumptr = *n2ptr-- + carry;
+ if (tmp >= Libbcmath.BASE) {
+ carry = 1;
+ tmp -= Libbcmath.BASE;
+ } else {
+ carry = 0;
+ }
+ sum.n_value[sumptr--] = tmp;
+ }
+ } else {
+ // n1 is bigger then n2..
+ while (n1bytes-- > 0) {
+ tmp = n1.n_value[n1ptr--] + carry;
+ // *sumptr = *n1ptr-- + carry;
+ if (tmp >= Libbcmath.BASE) {
+ carry = 1;
+ tmp -= Libbcmath.BASE;
+ } else {
+ carry = 0;
+ }
+ sum.n_value[sumptr--] = tmp;
+ }
+ }
+
+ // Set final carry.
+ if (carry === 1) {
+ sum.n_value[sumptr] += 1;
+ // *sumptr += 1;
+ }
+
+ // Adjust sum and return.
+ Libbcmath._bc_rm_leading_zeros(sum);
+ return sum;
+ },
+
+ /**
+ * Perform a subtraction
+ *
+ * Perform subtraction: N2 is subtracted from N1 and the value is
+ * returned. The signs of N1 and N2 are ignored. Also, N1 is
+ * assumed to be larger than N2. SCALE_MIN is the minimum scale
+ * of the result.
+ *
+ * Basic school maths says to subtract 2 numbers..
+ * 1. make them the same length, the decimal places, and the integer part
+ * 2. start from the right and subtract the two numbers from each other
+ * 3. if the sum of the 2 numbers < 0, carry -1 to the next set and add 10
+ * (ie 18 > carry 1 becomes 8). thus 0.9 + 0.9 = 1.8
+ *
+ * @param {bc_num} n1
+ * @param {bc_num} n2
+ * @param {int} scaleMin
+ * @return bc_num
+ */
+ _bc_do_sub: function _bc_do_sub(n1, n2, scaleMin) {
+ var diff; // bc_num
+ var diffScale, diffLen; // int
+ var minScale, minLen; // int
+ var n1ptr, n2ptr, diffptr; // int
+ var borrow, count, val; // int
+ // Allocate temporary storage.
+ diffLen = Libbcmath.MAX(n1.n_len, n2.n_len);
+ diffScale = Libbcmath.MAX(n1.n_scale, n2.n_scale);
+ minLen = Libbcmath.MIN(n1.n_len, n2.n_len);
+ minScale = Libbcmath.MIN(n1.n_scale, n2.n_scale);
+ diff = Libbcmath.bc_new_num(diffLen, Libbcmath.MAX(diffScale, scaleMin));
+
+ /* Not needed?
+ // Zero extra digits made by scaleMin.
+ if (scaleMin > diffScale) {
+ diffptr = (char *) (diff->n_value + diffLen + diffScale);
+ for (count = scaleMin - diffScale; count > 0; count--) {
+ *diffptr++ = 0;
+ }
+ }
+ */
+
+ // Initialize the subtract.
+ n1ptr = n1.n_len + n1.n_scale - 1;
+ n2ptr = n2.n_len + n2.n_scale - 1;
+ diffptr = diffLen + diffScale - 1;
+
+ // Subtract the numbers.
+ borrow = 0;
+
+ // Take care of the longer scaled number.
+ if (n1.n_scale !== minScale) {
+ // n1 has the longer scale
+ for (count = n1.n_scale - minScale; count > 0; count--) {
+ diff.n_value[diffptr--] = n1.n_value[n1ptr--];
+ // *diffptr-- = *n1ptr--;
+ }
+ } else {
+ // n2 has the longer scale
+ for (count = n2.n_scale - minScale; count > 0; count--) {
+ val = 0 - n2.n_value[n2ptr--] - borrow;
+ // val = - *n2ptr-- - borrow;
+ if (val < 0) {
+ val += Libbcmath.BASE;
+ borrow = 1;
+ } else {
+ borrow = 0;
+ }
+ diff.n_value[diffptr--] = val;
+ //* diffptr-- = val;
+ }
+ }
+
+ // Now do the equal length scale and integer parts.
+ for (count = 0; count < minLen + minScale; count++) {
+ val = n1.n_value[n1ptr--] - n2.n_value[n2ptr--] - borrow;
+ // val = *n1ptr-- - *n2ptr-- - borrow;
+ if (val < 0) {
+ val += Libbcmath.BASE;
+ borrow = 1;
+ } else {
+ borrow = 0;
+ }
+ diff.n_value[diffptr--] = val;
+ //* diffptr-- = val;
+ }
+
+ // If n1 has more digits then n2, we now do that subtract.
+ if (diffLen !== minLen) {
+ for (count = diffLen - minLen; count > 0; count--) {
+ val = n1.n_value[n1ptr--] - borrow;
+ // val = *n1ptr-- - borrow;
+ if (val < 0) {
+ val += Libbcmath.BASE;
+ borrow = 1;
+ } else {
+ borrow = 0;
+ }
+ diff.n_value[diffptr--] = val;
+ }
+ }
+
+ // Clean up and return.
+ Libbcmath._bc_rm_leading_zeros(diff);
+ return diff;
+ },
+
+ /**
+ *
+ * @param {int} length
+ * @param {int} scale
+ * @return bc_num
+ */
+ bc_new_num: function bc_new_num(length, scale) {
+ var temp; // bc_num
+ temp = new Libbcmath.bc_num(); // eslint-disable-line new-cap
+ temp.n_sign = Libbcmath.PLUS;
+ temp.n_len = length;
+ temp.n_scale = scale;
+ temp.n_value = Libbcmath.safe_emalloc(1, length + scale, 0);
+ Libbcmath.memset(temp.n_value, 0, 0, length + scale);
+ return temp;
+ },
+
+ safe_emalloc: function safe_emalloc(size, len, extra) {
+ return Array(size * len + extra);
+ },
+
+ /**
+ * Create a new number
+ */
+ bc_init_num: function bc_init_num() {
+ return new Libbcmath.bc_new_num(1, 0); // eslint-disable-line new-cap
+ },
+
+ _bc_rm_leading_zeros: function _bc_rm_leading_zeros(num) {
+ // We can move n_value to point to the first non zero digit!
+ while (num.n_value[0] === 0 && num.n_len > 1) {
+ num.n_value.shift();
+ num.n_len--;
+ }
+ },
+
+ /**
+ * Convert to bc_num detecting scale
+ */
+ php_str2num: function php_str2num(str) {
+ var p;
+ p = str.indexOf('.');
+ if (p === -1) {
+ return Libbcmath.bc_str2num(str, 0);
+ } else {
+ return Libbcmath.bc_str2num(str, str.length - p);
+ }
+ },
+
+ CH_VAL: function CH_VAL(c) {
+ return c - '0'; // ??
+ },
+
+ BCD_CHAR: function BCD_CHAR(d) {
+ return d + '0'; // ??
+ },
+
+ isdigit: function isdigit(c) {
+ return isNaN(parseInt(c, 10));
+ },
+
+ bc_str2num: function bc_str2num(strIn, scale) {
+ var str, num, ptr, digits, strscale, zeroInt, nptr;
+ // remove any non-expected characters
+ // Check for valid number and count digits.
+
+ str = strIn.split(''); // convert to array
+ ptr = 0; // str
+ digits = 0;
+ strscale = 0;
+ zeroInt = false;
+ if (str[ptr] === '+' || str[ptr] === '-') {
+ ptr++; // Sign
+ }
+ while (str[ptr] === '0') {
+ ptr++; // Skip leading zeros.
+ }
+ // while (Libbcmath.isdigit(str[ptr])) {
+ while (str[ptr] % 1 === 0) {
+ // Libbcmath.isdigit(str[ptr])) {
+ ptr++;
+ digits++; // digits
+ }
+
+ if (str[ptr] === '.') {
+ ptr++; // decimal point
+ }
+ // while (Libbcmath.isdigit(str[ptr])) {
+ while (str[ptr] % 1 === 0) {
+ // Libbcmath.isdigit(str[ptr])) {
+ ptr++;
+ strscale++; // digits
+ }
+
+ if (str[ptr] || digits + strscale === 0) {
+ // invalid number, return 0
+ return Libbcmath.bc_init_num();
+ //* num = bc_copy_num (BCG(_zero_));
+ }
+
+ // Adjust numbers and allocate storage and initialize fields.
+ strscale = Libbcmath.MIN(strscale, scale);
+ if (digits === 0) {
+ zeroInt = true;
+ digits = 1;
+ }
+
+ num = Libbcmath.bc_new_num(digits, strscale);
+
+ // Build the whole number.
+ ptr = 0; // str
+ if (str[ptr] === '-') {
+ num.n_sign = Libbcmath.MINUS;
+ // (*num)->n_sign = MINUS;
+ ptr++;
+ } else {
+ num.n_sign = Libbcmath.PLUS;
+ // (*num)->n_sign = PLUS;
+ if (str[ptr] === '+') {
+ ptr++;
+ }
+ }
+ while (str[ptr] === '0') {
+ ptr++; // Skip leading zeros.
+ }
+
+ nptr = 0; // (*num)->n_value;
+ if (zeroInt) {
+ num.n_value[nptr++] = 0;
+ digits = 0;
+ }
+ for (; digits > 0; digits--) {
+ num.n_value[nptr++] = Libbcmath.CH_VAL(str[ptr++]);
+ //* nptr++ = CH_VAL(*ptr++);
+ }
+
+ // Build the fractional part.
+ if (strscale > 0) {
+ ptr++; // skip the decimal point!
+ for (; strscale > 0; strscale--) {
+ num.n_value[nptr++] = Libbcmath.CH_VAL(str[ptr++]);
+ }
+ }
+
+ return num;
+ },
+
+ cint: function cint(v) {
+ if (typeof v === 'undefined') {
+ v = 0;
+ }
+ var x = parseInt(v, 10);
+ if (isNaN(x)) {
+ x = 0;
+ }
+ return x;
+ },
+
+ /**
+ * Basic min function
+ * @param {int} a
+ * @param {int} b
+ */
+ MIN: function MIN(a, b) {
+ return a > b ? b : a;
+ },
+
+ /**
+ * Basic max function
+ * @param {int} a
+ * @param {int} b
+ */
+ MAX: function MAX(a, b) {
+ return a > b ? a : b;
+ },
+
+ /**
+ * Basic odd function
+ * @param {int} a
+ */
+ ODD: function ODD(a) {
+ return a & 1;
+ },
+
+ /**
+ * replicate c function
+ * @param {array} r return (by reference)
+ * @param {int} ptr
+ * @param {string} chr char to fill
+ * @param {int} len length to fill
+ */
+ memset: function memset(r, ptr, chr, len) {
+ var i;
+ for (i = 0; i < len; i++) {
+ r[ptr + i] = chr;
+ }
+ },
+
+ /**
+ * Replacement c function
+ * Obviously can't work like c does, so we've added an "offset"
+ * param so you could do memcpy(dest+1, src, len) as memcpy(dest, 1, src, len)
+ * Also only works on arrays
+ */
+ memcpy: function memcpy(dest, ptr, src, srcptr, len) {
+ var i;
+ for (i = 0; i < len; i++) {
+ dest[ptr + i] = src[srcptr + i];
+ }
+ return true;
+ },
+
+ /**
+ * Determine if the number specified is zero or not
+ * @param {bc_num} num number to check
+ * @return boolean true when zero, false when not zero.
+ */
+ bc_is_zero: function bc_is_zero(num) {
+ var count; // int
+ var nptr; // int
+ // Quick check.
+ // if (num === BCG(_zero_)) return TRUE;
+ // Initialize
+ count = num.n_len + num.n_scale;
+ nptr = 0; // num->n_value;
+ // The check
+ while (count > 0 && num.n_value[nptr++] === 0) {
+ count--;
+ }
+
+ if (count !== 0) {
+ return false;
+ } else {
+ return true;
+ }
+ },
+
+ bc_out_of_memory: function bc_out_of_memory() {
+ throw new Error('(BC) Out of memory');
+ }
+ };
+ return Libbcmath;
+};
+//# sourceMappingURL=_bc.js.map \ No newline at end of file