'use strict'; module.exports = function _bc() { // eslint-disable-line camelcase // discuss at: http://locutus.io/php/_helpers/_bc // original by: lmeyrick (https://sourceforge.net/projects/bcmath-js/) // improved by: Brett Zamir (http://brett-zamir.me) // example 1: var $bc = _bc() // example 1: var $result = $bc.PLUS // returns 1: '+' /** * BC Math Library for Javascript * Ported from the PHP5 bcmath extension source code, * which uses the Libbcmath package... * Copyright (C) 1991, 1992, 1993, 1994, 1997 Free Software Foundation, Inc. * Copyright (C) 2000 Philip A. Nelson * The Free Software Foundation, Inc. * 59 Temple Place, Suite 330 * Boston, MA 02111-1307 USA. * e-mail: philnelson@acm.org * us-mail: Philip A. Nelson * Computer Science Department, 9062 * Western Washington University * Bellingham, WA 98226-9062 * * bcmath-js homepage: * * This code is covered under the LGPL licence, and can be used however you want :) * Be kind and share any decent code changes. */ /** * Binary Calculator (BC) Arbitrary Precision Mathematics Lib v0.10 (LGPL) * Copy of Libbcmath included in PHP5 src * * Note: this is just the shared library file and does not include the php-style functions. * use bcmath{-min}.js for functions like bcadd, bcsub etc. * * Feel free to use how-ever you want, just email any bug-fixes/improvements * to the sourceforge project: * * * Ported from the PHP5 bcmath extension source code, * which uses the Libbcmath package... * Copyright (C) 1991, 1992, 1993, 1994, 1997 Free Software Foundation, Inc. * Copyright (C) 2000 Philip A. Nelson * The Free Software Foundation, Inc. * 59 Temple Place, Suite 330 * Boston, MA 02111-1307 USA. * e-mail: philnelson@acm.org * us-mail: Philip A. Nelson * Computer Science Department, 9062 * Western Washington University * Bellingham, WA 98226-9062 */ var Libbcmath = { PLUS: '+', MINUS: '-', BASE: 10, // must be 10 (for now) scale: 0, // default scale /** * Basic number structure */ bc_num: function bc_num() { this.n_sign = null; // sign this.n_len = null; // (int) The number of digits before the decimal point. this.n_scale = null; // (int) The number of digits after the decimal point. // this.n_refs = null; // (int) The number of pointers to this number. // this.n_text = null; // ?? Linked list for available list. this.n_value = null; // array as value, where 1.23 = [1,2,3] this.toString = function () { var r, tmp; tmp = this.n_value.join(''); // add minus sign (if applicable) then add the integer part r = (this.n_sign === Libbcmath.PLUS ? '' : this.n_sign) + tmp.substr(0, this.n_len); // if decimal places, add a . and the decimal part if (this.n_scale > 0) { r += '.' + tmp.substr(this.n_len, this.n_scale); } return r; }; }, /** * Base add function * // Here is the full add routine that takes care of negative numbers. // N1 is added to N2 and the result placed into RESULT. SCALE_MIN // is the minimum scale for the result. * * @param {bc_num} n1 * @param {bc_num} n2 * @param {int} scaleMin * @return bc_num */ bc_add: function bc_add(n1, n2, scaleMin) { var sum, cmpRes, resScale; if (n1.n_sign === n2.n_sign) { sum = Libbcmath._bc_do_add(n1, n2, scaleMin); sum.n_sign = n1.n_sign; } else { // subtraction must be done. cmpRes = Libbcmath._bc_do_compare(n1, n2, false, false); // Compare magnitudes. switch (cmpRes) { case -1: // n1 is less than n2, subtract n1 from n2. sum = Libbcmath._bc_do_sub(n2, n1, scaleMin); sum.n_sign = n2.n_sign; break; case 0: // They are equal! return zero with the correct scale! resScale = Libbcmath.MAX(scaleMin, Libbcmath.MAX(n1.n_scale, n2.n_scale)); sum = Libbcmath.bc_new_num(1, resScale); Libbcmath.memset(sum.n_value, 0, 0, resScale + 1); break; case 1: // n2 is less than n1, subtract n2 from n1. sum = Libbcmath._bc_do_sub(n1, n2, scaleMin); sum.n_sign = n1.n_sign; } } return sum; }, /** * This is the "user callable" routine to compare numbers N1 and N2. * @param {bc_num} n1 * @param {bc_num} n2 * @return int -1, 0, 1 (n1 < n2, ===, n1 > n2) */ bc_compare: function bc_compare(n1, n2) { return Libbcmath._bc_do_compare(n1, n2, true, false); }, _one_mult: function _one_mult(num, nPtr, size, digit, result, rPtr) { var carry, value; // int var nptr, rptr; // int pointers if (digit === 0) { Libbcmath.memset(result, 0, 0, size); // memset (result, 0, size); } else { if (digit === 1) { Libbcmath.memcpy(result, rPtr, num, nPtr, size); // memcpy (result, num, size); } else { // Initialize nptr = nPtr + size - 1; // nptr = (unsigned char *) (num+size-1); rptr = rPtr + size - 1; // rptr = (unsigned char *) (result+size-1); carry = 0; while (size-- > 0) { value = num[nptr--] * digit + carry; // value = *nptr-- * digit + carry; result[rptr--] = value % Libbcmath.BASE; // @CHECK cint //*rptr-- = value % BASE; carry = Math.floor(value / Libbcmath.BASE); // @CHECK cint //carry = value / BASE; } if (carry !== 0) { result[rptr] = carry; } } } }, bc_divide: function bc_divide(n1, n2, scale) { // var quot // bc_num return var qval; // bc_num var num1, num2; // string var ptr1, ptr2, n2ptr, qptr; // int pointers var scale1, val; // int var len1, len2, scale2, qdigits, extra, count; // int var qdig, qguess, borrow, carry; // int var mval; // string var zero; // char var norm; // int // var ptrs // return object from one_mul // Test for divide by zero. (return failure) if (Libbcmath.bc_is_zero(n2)) { return -1; } // Test for zero divide by anything (return zero) if (Libbcmath.bc_is_zero(n1)) { return Libbcmath.bc_new_num(1, scale); } /* Test for n1 equals n2 (return 1 as n1 nor n2 are zero) if (Libbcmath.bc_compare(n1, n2, Libbcmath.MAX(n1.n_scale, n2.n_scale)) === 0) { quot=Libbcmath.bc_new_num(1, scale); quot.n_value[0] = 1; return quot; } */ // Test for divide by 1. If it is we must truncate. // @todo: check where scale > 0 too.. can't see why not // (ie bc_is_zero - add bc_is_one function) if (n2.n_scale === 0) { if (n2.n_len === 1 && n2.n_value[0] === 1) { qval = Libbcmath.bc_new_num(n1.n_len, scale); // qval = bc_new_num (n1->n_len, scale); qval.n_sign = n1.n_sign === n2.n_sign ? Libbcmath.PLUS : Libbcmath.MINUS; // memset (&qval->n_value[n1->n_len],0,scale): Libbcmath.memset(qval.n_value, n1.n_len, 0, scale); // memcpy (qval->n_value, n1->n_value, n1->n_len + MIN(n1->n_scale,scale)): Libbcmath.memcpy(qval.n_value, 0, n1.n_value, 0, n1.n_len + Libbcmath.MIN(n1.n_scale, scale)); // can we return here? not in c src, but can't see why-not. // return qval; } } /* Set up the divide. Move the decimal point on n1 by n2's scale. Remember, zeros on the end of num2 are wasted effort for dividing. */ scale2 = n2.n_scale; // scale2 = n2->n_scale; n2ptr = n2.n_len + scale2 - 1; // n2ptr = (unsigned char *) n2.n_value+n2.n_len+scale2-1; while (scale2 > 0 && n2.n_value[n2ptr--] === 0) { scale2--; } len1 = n1.n_len + scale2; scale1 = n1.n_scale - scale2; if (scale1 < scale) { extra = scale - scale1; } else { extra = 0; } // num1 = (unsigned char *) safe_emalloc (1, n1.n_len+n1.n_scale, extra+2): num1 = Libbcmath.safe_emalloc(1, n1.n_len + n1.n_scale, extra + 2); if (num1 === null) { Libbcmath.bc_out_of_memory(); } // memset (num1, 0, n1->n_len+n1->n_scale+extra+2): Libbcmath.memset(num1, 0, 0, n1.n_len + n1.n_scale + extra + 2); // memcpy (num1+1, n1.n_value, n1.n_len+n1.n_scale): Libbcmath.memcpy(num1, 1, n1.n_value, 0, n1.n_len + n1.n_scale); // len2 = n2->n_len + scale2: len2 = n2.n_len + scale2; // num2 = (unsigned char *) safe_emalloc (1, len2, 1): num2 = Libbcmath.safe_emalloc(1, len2, 1); if (num2 === null) { Libbcmath.bc_out_of_memory(); } // memcpy (num2, n2.n_value, len2): Libbcmath.memcpy(num2, 0, n2.n_value, 0, len2); // *(num2+len2) = 0: num2[len2] = 0; // n2ptr = num2: n2ptr = 0; // while (*n2ptr === 0): while (num2[n2ptr] === 0) { n2ptr++; len2--; } // Calculate the number of quotient digits. if (len2 > len1 + scale) { qdigits = scale + 1; zero = true; } else { zero = false; if (len2 > len1) { qdigits = scale + 1; // One for the zero integer part. } else { qdigits = len1 - len2 + scale + 1; } } // Allocate and zero the storage for the quotient. // qval = bc_new_num (qdigits-scale,scale); qval = Libbcmath.bc_new_num(qdigits - scale, scale); // memset (qval->n_value, 0, qdigits); Libbcmath.memset(qval.n_value, 0, 0, qdigits); // Allocate storage for the temporary storage mval. // mval = (unsigned char *) safe_emalloc (1, len2, 1); mval = Libbcmath.safe_emalloc(1, len2, 1); if (mval === null) { Libbcmath.bc_out_of_memory(); } // Now for the full divide algorithm. if (!zero) { // Normalize // norm = Libbcmath.cint(10 / (Libbcmath.cint(n2.n_value[n2ptr]) + 1)); // norm = 10 / ((int)*n2ptr + 1) norm = Math.floor(10 / (n2.n_value[n2ptr] + 1)); // norm = 10 / ((int)*n2ptr + 1); if (norm !== 1) { // Libbcmath._one_mult(num1, len1+scale1+extra+1, norm, num1); Libbcmath._one_mult(num1, 0, len1 + scale1 + extra + 1, norm, num1, 0); // Libbcmath._one_mult(n2ptr, len2, norm, n2ptr); Libbcmath._one_mult(n2.n_value, n2ptr, len2, norm, n2.n_value, n2ptr); // @todo: Check: Is the pointer affected by the call? if so, // maybe need to adjust points on return? } // Initialize divide loop. qdig = 0; if (len2 > len1) { qptr = len2 - len1; // qptr = (unsigned char *) qval.n_value+len2-len1; } else { qptr = 0; // qptr = (unsigned char *) qval.n_value; } // Loop while (qdig <= len1 + scale - len2) { // Calculate the quotient digit guess. if (n2.n_value[n2ptr] === num1[qdig]) { qguess = 9; } else { qguess = Math.floor((num1[qdig] * 10 + num1[qdig + 1]) / n2.n_value[n2ptr]); } // Test qguess. if (n2.n_value[n2ptr + 1] * qguess > (num1[qdig] * 10 + num1[qdig + 1] - n2.n_value[n2ptr] * qguess) * 10 + num1[qdig + 2]) { qguess--; // And again. if (n2.n_value[n2ptr + 1] * qguess > (num1[qdig] * 10 + num1[qdig + 1] - n2.n_value[n2ptr] * qguess) * 10 + num1[qdig + 2]) { qguess--; } } // Multiply and subtract. borrow = 0; if (qguess !== 0) { mval[0] = 0; //* mval = 0; // @CHECK is this to fix ptr2 < 0? // _one_mult (n2ptr, len2, qguess, mval+1); // @CHECK Libbcmath._one_mult(n2.n_value, n2ptr, len2, qguess, mval, 1); ptr1 = qdig + len2; // (unsigned char *) num1+qdig+len2; ptr2 = len2; // (unsigned char *) mval+len2; // @todo: CHECK: Does a negative pointer return null? // ptr2 can be < 0 here as ptr1 = len2, thus count < len2+1 will always fail ? for (count = 0; count < len2 + 1; count++) { if (ptr2 < 0) { // val = Libbcmath.cint(num1[ptr1]) - 0 - borrow; // val = (int) *ptr1 - (int) *ptr2-- - borrow; val = num1[ptr1] - 0 - borrow; // val = (int) *ptr1 - (int) *ptr2-- - borrow; } else { // val = Libbcmath.cint(num1[ptr1]) - Libbcmath.cint(mval[ptr2--]) - borrow; // val = (int) *ptr1 - (int) *ptr2-- - borrow; // val = (int) *ptr1 - (int) *ptr2-- - borrow; val = num1[ptr1] - mval[ptr2--] - borrow; } if (val < 0) { val += 10; borrow = 1; } else { borrow = 0; } num1[ptr1--] = val; } } // Test for negative result. if (borrow === 1) { qguess--; ptr1 = qdig + len2; // (unsigned char *) num1+qdig+len2; ptr2 = len2 - 1; // (unsigned char *) n2ptr+len2-1; carry = 0; for (count = 0; count < len2; count++) { if (ptr2 < 0) { // val = Libbcmath.cint(num1[ptr1]) + 0 + carry; // val = (int) *ptr1 + (int) *ptr2-- + carry; // val = (int) *ptr1 + (int) *ptr2-- + carry; val = num1[ptr1] + 0 + carry; } else { // val = Libbcmath.cint(num1[ptr1]) + Libbcmath.cint(n2.n_value[ptr2--]) + carry; // val = (int) *ptr1 + (int) *ptr2-- + carry; // val = (int) *ptr1 + (int) *ptr2-- + carry; val = num1[ptr1] + n2.n_value[ptr2--] + carry; } if (val > 9) { val -= 10; carry = 1; } else { carry = 0; } num1[ptr1--] = val; //* ptr1-- = val; } if (carry === 1) { // num1[ptr1] = Libbcmath.cint((num1[ptr1] + 1) % 10); // *ptr1 = (*ptr1 + 1) % 10; // @CHECK // *ptr1 = (*ptr1 + 1) % 10; // @CHECK num1[ptr1] = (num1[ptr1] + 1) % 10; } } // We now know the quotient digit. qval.n_value[qptr++] = qguess; //* qptr++ = qguess; qdig++; } } // Clean up and return the number. qval.n_sign = n1.n_sign === n2.n_sign ? Libbcmath.PLUS : Libbcmath.MINUS; if (Libbcmath.bc_is_zero(qval)) { qval.n_sign = Libbcmath.PLUS; } Libbcmath._bc_rm_leading_zeros(qval); return qval; // return 0; // Everything is OK. }, MUL_BASE_DIGITS: 80, MUL_SMALL_DIGITS: 80 / 4, // #define MUL_SMALL_DIGITS mul_base_digits/4 /* The multiply routine. N2 times N1 is put int PROD with the scale of the result being MIN(N2 scale+N1 scale, MAX (SCALE, N2 scale, N1 scale)). */ /** * @param n1 bc_num * @param n2 bc_num * @param scale [int] optional */ bc_multiply: function bc_multiply(n1, n2, scale) { var pval; // bc_num var len1, len2; // int var fullScale, prodScale; // int // Initialize things. len1 = n1.n_len + n1.n_scale; len2 = n2.n_len + n2.n_scale; fullScale = n1.n_scale + n2.n_scale; prodScale = Libbcmath.MIN(fullScale, Libbcmath.MAX(scale, Libbcmath.MAX(n1.n_scale, n2.n_scale))); // pval = Libbcmath.bc_init_num(); // allow pass by ref // Do the multiply pval = Libbcmath._bc_rec_mul(n1, len1, n2, len2, fullScale); // Assign to prod and clean up the number. pval.n_sign = n1.n_sign === n2.n_sign ? Libbcmath.PLUS : Libbcmath.MINUS; // pval.n_value = pval.nPtr; pval.n_len = len2 + len1 + 1 - fullScale; pval.n_scale = prodScale; Libbcmath._bc_rm_leading_zeros(pval); if (Libbcmath.bc_is_zero(pval)) { pval.n_sign = Libbcmath.PLUS; } // bc_free_num (prod); return pval; }, new_sub_num: function new_sub_num(length, scale, value) { var ptr = arguments.length > 3 && arguments[3] !== undefined ? arguments[3] : 0; var temp = new Libbcmath.bc_num(); // eslint-disable-line new-cap temp.n_sign = Libbcmath.PLUS; temp.n_len = length; temp.n_scale = scale; temp.n_value = Libbcmath.safe_emalloc(1, length + scale, 0); Libbcmath.memcpy(temp.n_value, 0, value, ptr, length + scale); return temp; }, _bc_simp_mul: function _bc_simp_mul(n1, n1len, n2, n2len, fullScale) { var prod; // bc_num var n1ptr, n2ptr, pvptr; // char *n1ptr, *n2ptr, *pvptr; var n1end, n2end; // char *n1end, *n2end; // To the end of n1 and n2. var indx, sum, prodlen; // int indx, sum, prodlen; prodlen = n1len + n2len + 1; prod = Libbcmath.bc_new_num(prodlen, 0); n1end = n1len - 1; // (char *) (n1->n_value + n1len - 1); n2end = n2len - 1; // (char *) (n2->n_value + n2len - 1); pvptr = prodlen - 1; // (char *) ((*prod)->n_value + prodlen - 1); sum = 0; // Here is the loop... for (indx = 0; indx < prodlen - 1; indx++) { // (char *) (n1end - MAX(0, indx-n2len+1)); n1ptr = n1end - Libbcmath.MAX(0, indx - n2len + 1); // (char *) (n2end - MIN(indx, n2len-1)); n2ptr = n2end - Libbcmath.MIN(indx, n2len - 1); while (n1ptr >= 0 && n2ptr <= n2end) { // sum += *n1ptr-- * *n2ptr++; sum += n1.n_value[n1ptr--] * n2.n_value[n2ptr++]; } //* pvptr-- = sum % BASE; prod.n_value[pvptr--] = Math.floor(sum % Libbcmath.BASE); sum = Math.floor(sum / Libbcmath.BASE); // sum = sum / BASE; } prod.n_value[pvptr] = sum; //* pvptr = sum; return prod; }, /* A special adder/subtractor for the recursive divide and conquer multiply algorithm. Note: if sub is called, accum must be larger that what is being subtracted. Also, accum and val must have n_scale = 0. (e.g. they must look like integers. *) */ _bc_shift_addsub: function _bc_shift_addsub(accum, val, shift, sub) { var accp, valp; // signed char *accp, *valp; var count, carry; // int count, carry; count = val.n_len; if (val.n_value[0] === 0) { count--; } // assert (accum->n_len+accum->n_scale >= shift+count); if (accum.n_len + accum.n_scale < shift + count) { throw new Error('len + scale < shift + count'); // ?? I think that's what assert does :) } // Set up pointers and others // (signed char *)(accum->n_value + accum->n_len + accum->n_scale - shift - 1); accp = accum.n_len + accum.n_scale - shift - 1; valp = val.n_len - 1; // (signed char *)(val->n_value + val->n_len - 1); carry = 0; if (sub) { // Subtraction, carry is really borrow. while (count--) { accum.n_value[accp] -= val.n_value[valp--] + carry; //* accp -= *valp-- + carry; if (accum.n_value[accp] < 0) { // if (*accp < 0) carry = 1; accum.n_value[accp--] += Libbcmath.BASE; //* accp-- += BASE; } else { carry = 0; accp--; } } while (carry) { accum.n_value[accp] -= carry; //* accp -= carry; if (accum.n_value[accp] < 0) { // if (*accp < 0) accum.n_value[accp--] += Libbcmath.BASE; // *accp-- += BASE; } else { carry = 0; } } } else { // Addition while (count--) { accum.n_value[accp] += val.n_value[valp--] + carry; //* accp += *valp-- + carry; if (accum.n_value[accp] > Libbcmath.BASE - 1) { // if (*accp > (BASE-1)) carry = 1; accum.n_value[accp--] -= Libbcmath.BASE; //* accp-- -= BASE; } else { carry = 0; accp--; } } while (carry) { accum.n_value[accp] += carry; //* accp += carry; if (accum.n_value[accp] > Libbcmath.BASE - 1) { // if (*accp > (BASE-1)) accum.n_value[accp--] -= Libbcmath.BASE; //* accp-- -= BASE; } else { carry = 0; } } } return true; // accum is the pass-by-reference return }, /* Recursive divide and conquer multiply algorithm. based on Let u = u0 + u1*(b^n) Let v = v0 + v1*(b^n) Then uv = (B^2n+B^n)*u1*v1 + B^n*(u1-u0)*(v0-v1) + (B^n+1)*u0*v0 B is the base of storage, number of digits in u1,u0 close to equal. */ _bc_rec_mul: function _bc_rec_mul(u, ulen, v, vlen, fullScale) { var prod; // @return var u0, u1, v0, v1; // bc_num // var u0len, // var v0len // int var m1, m2, m3, d1, d2; // bc_num var n, prodlen, m1zero; // int var d1len, d2len; // int // Base case? if (ulen + vlen < Libbcmath.MUL_BASE_DIGITS || ulen < Libbcmath.MUL_SMALL_DIGITS || vlen < Libbcmath.MUL_SMALL_DIGITS) { return Libbcmath._bc_simp_mul(u, ulen, v, vlen, fullScale); } // Calculate n -- the u and v split point in digits. n = Math.floor((Libbcmath.MAX(ulen, vlen) + 1) / 2); // Split u and v. if (ulen < n) { u1 = Libbcmath.bc_init_num(); // u1 = bc_copy_num (BCG(_zero_)); u0 = Libbcmath.new_sub_num(ulen, 0, u.n_value); } else { u1 = Libbcmath.new_sub_num(ulen - n, 0, u.n_value); u0 = Libbcmath.new_sub_num(n, 0, u.n_value, ulen - n); } if (vlen < n) { v1 = Libbcmath.bc_init_num(); // bc_copy_num (BCG(_zero_)); v0 = Libbcmath.new_sub_num(vlen, 0, v.n_value); } else { v1 = Libbcmath.new_sub_num(vlen - n, 0, v.n_value); v0 = Libbcmath.new_sub_num(n, 0, v.n_value, vlen - n); } Libbcmath._bc_rm_leading_zeros(u1); Libbcmath._bc_rm_leading_zeros(u0); // var u0len = u0.n_len Libbcmath._bc_rm_leading_zeros(v1); Libbcmath._bc_rm_leading_zeros(v0); // var v0len = v0.n_len m1zero = Libbcmath.bc_is_zero(u1) || Libbcmath.bc_is_zero(v1); // Calculate sub results ... d1 = Libbcmath.bc_init_num(); // needed? d2 = Libbcmath.bc_init_num(); // needed? d1 = Libbcmath.bc_sub(u1, u0, 0); d1len = d1.n_len; d2 = Libbcmath.bc_sub(v0, v1, 0); d2len = d2.n_len; // Do recursive multiplies and shifted adds. if (m1zero) { m1 = Libbcmath.bc_init_num(); // bc_copy_num (BCG(_zero_)); } else { // m1 = Libbcmath.bc_init_num(); //allow pass-by-ref m1 = Libbcmath._bc_rec_mul(u1, u1.n_len, v1, v1.n_len, 0); } if (Libbcmath.bc_is_zero(d1) || Libbcmath.bc_is_zero(d2)) { m2 = Libbcmath.bc_init_num(); // bc_copy_num (BCG(_zero_)); } else { // m2 = Libbcmath.bc_init_num(); //allow pass-by-ref m2 = Libbcmath._bc_rec_mul(d1, d1len, d2, d2len, 0); } if (Libbcmath.bc_is_zero(u0) || Libbcmath.bc_is_zero(v0)) { m3 = Libbcmath.bc_init_num(); // bc_copy_num (BCG(_zero_)); } else { // m3 = Libbcmath.bc_init_num(); //allow pass-by-ref m3 = Libbcmath._bc_rec_mul(u0, u0.n_len, v0, v0.n_len, 0); } // Initialize product prodlen = ulen + vlen + 1; prod = Libbcmath.bc_new_num(prodlen, 0); if (!m1zero) { Libbcmath._bc_shift_addsub(prod, m1, 2 * n, 0); Libbcmath._bc_shift_addsub(prod, m1, n, 0); } Libbcmath._bc_shift_addsub(prod, m3, n, 0); Libbcmath._bc_shift_addsub(prod, m3, 0, 0); Libbcmath._bc_shift_addsub(prod, m2, n, d1.n_sign !== d2.n_sign); return prod; // Now clean up! // bc_free_num (&u1); // bc_free_num (&u0); // bc_free_num (&v1); // bc_free_num (&m1); // bc_free_num (&v0); // bc_free_num (&m2); // bc_free_num (&m3); // bc_free_num (&d1); // bc_free_num (&d2); }, /** * * @param {bc_num} n1 * @param {bc_num} n2 * @param {boolean} useSign * @param {boolean} ignoreLast * @return -1, 0, 1 (see bc_compare) */ _bc_do_compare: function _bc_do_compare(n1, n2, useSign, ignoreLast) { var n1ptr, n2ptr; // int var count; // int // First, compare signs. if (useSign && n1.n_sign !== n2.n_sign) { if (n1.n_sign === Libbcmath.PLUS) { return 1; // Positive N1 > Negative N2 } else { return -1; // Negative N1 < Positive N1 } } // Now compare the magnitude. if (n1.n_len !== n2.n_len) { if (n1.n_len > n2.n_len) { // Magnitude of n1 > n2. if (!useSign || n1.n_sign === Libbcmath.PLUS) { return 1; } else { return -1; } } else { // Magnitude of n1 < n2. if (!useSign || n1.n_sign === Libbcmath.PLUS) { return -1; } else { return 1; } } } /* If we get here, they have the same number of integer digits. check the integer part and the equal length part of the fraction. */ count = n1.n_len + Math.min(n1.n_scale, n2.n_scale); n1ptr = 0; n2ptr = 0; while (count > 0 && n1.n_value[n1ptr] === n2.n_value[n2ptr]) { n1ptr++; n2ptr++; count--; } if (ignoreLast && count === 1 && n1.n_scale === n2.n_scale) { return 0; } if (count !== 0) { if (n1.n_value[n1ptr] > n2.n_value[n2ptr]) { // Magnitude of n1 > n2. if (!useSign || n1.n_sign === Libbcmath.PLUS) { return 1; } else { return -1; } } else { // Magnitude of n1 < n2. if (!useSign || n1.n_sign === Libbcmath.PLUS) { return -1; } else { return 1; } } } // They are equal up to the last part of the equal part of the fraction. if (n1.n_scale !== n2.n_scale) { if (n1.n_scale > n2.n_scale) { for (count = n1.n_scale - n2.n_scale; count > 0; count--) { if (n1.n_value[n1ptr++] !== 0) { // Magnitude of n1 > n2. if (!useSign || n1.n_sign === Libbcmath.PLUS) { return 1; } else { return -1; } } } } else { for (count = n2.n_scale - n1.n_scale; count > 0; count--) { if (n2.n_value[n2ptr++] !== 0) { // Magnitude of n1 < n2. if (!useSign || n1.n_sign === Libbcmath.PLUS) { return -1; } else { return 1; } } } } } // They must be equal! return 0; }, /* Here is the full subtract routine that takes care of negative numbers. N2 is subtracted from N1 and the result placed in RESULT. SCALE_MIN is the minimum scale for the result. */ bc_sub: function bc_sub(n1, n2, scaleMin) { var diff; // bc_num var cmpRes, resScale; // int if (n1.n_sign !== n2.n_sign) { diff = Libbcmath._bc_do_add(n1, n2, scaleMin); diff.n_sign = n1.n_sign; } else { // subtraction must be done. // Compare magnitudes. cmpRes = Libbcmath._bc_do_compare(n1, n2, false, false); switch (cmpRes) { case -1: // n1 is less than n2, subtract n1 from n2. diff = Libbcmath._bc_do_sub(n2, n1, scaleMin); diff.n_sign = n2.n_sign === Libbcmath.PLUS ? Libbcmath.MINUS : Libbcmath.PLUS; break; case 0: // They are equal! return zero! resScale = Libbcmath.MAX(scaleMin, Libbcmath.MAX(n1.n_scale, n2.n_scale)); diff = Libbcmath.bc_new_num(1, resScale); Libbcmath.memset(diff.n_value, 0, 0, resScale + 1); break; case 1: // n2 is less than n1, subtract n2 from n1. diff = Libbcmath._bc_do_sub(n1, n2, scaleMin); diff.n_sign = n1.n_sign; break; } } // Clean up and return. // bc_free_num (result); //* result = diff; return diff; }, _bc_do_add: function _bc_do_add(n1, n2, scaleMin) { var sum; // bc_num var sumScale, sumDigits; // int var n1ptr, n2ptr, sumptr; // int var carry, n1bytes, n2bytes; // int var tmp; // int // Prepare sum. sumScale = Libbcmath.MAX(n1.n_scale, n2.n_scale); sumDigits = Libbcmath.MAX(n1.n_len, n2.n_len) + 1; sum = Libbcmath.bc_new_num(sumDigits, Libbcmath.MAX(sumScale, scaleMin)); // Start with the fraction part. Initialize the pointers. n1bytes = n1.n_scale; n2bytes = n2.n_scale; n1ptr = n1.n_len + n1bytes - 1; n2ptr = n2.n_len + n2bytes - 1; sumptr = sumScale + sumDigits - 1; // Add the fraction part. First copy the longer fraction // (ie when adding 1.2345 to 1 we know .2345 is correct already) . if (n1bytes !== n2bytes) { if (n1bytes > n2bytes) { // n1 has more dp then n2 while (n1bytes > n2bytes) { sum.n_value[sumptr--] = n1.n_value[n1ptr--]; // *sumptr-- = *n1ptr--; n1bytes--; } } else { // n2 has more dp then n1 while (n2bytes > n1bytes) { sum.n_value[sumptr--] = n2.n_value[n2ptr--]; // *sumptr-- = *n2ptr--; n2bytes--; } } } // Now add the remaining fraction part and equal size integer parts. n1bytes += n1.n_len; n2bytes += n2.n_len; carry = 0; while (n1bytes > 0 && n2bytes > 0) { // add the two numbers together tmp = n1.n_value[n1ptr--] + n2.n_value[n2ptr--] + carry; // *sumptr = *n1ptr-- + *n2ptr-- + carry; // check if they are >= 10 (impossible to be more then 18) if (tmp >= Libbcmath.BASE) { carry = 1; tmp -= Libbcmath.BASE; // yep, subtract 10, add a carry } else { carry = 0; } sum.n_value[sumptr] = tmp; sumptr--; n1bytes--; n2bytes--; } // Now add carry the [rest of the] longer integer part. if (n1bytes === 0) { // n2 is a bigger number then n1 while (n2bytes-- > 0) { tmp = n2.n_value[n2ptr--] + carry; // *sumptr = *n2ptr-- + carry; if (tmp >= Libbcmath.BASE) { carry = 1; tmp -= Libbcmath.BASE; } else { carry = 0; } sum.n_value[sumptr--] = tmp; } } else { // n1 is bigger then n2.. while (n1bytes-- > 0) { tmp = n1.n_value[n1ptr--] + carry; // *sumptr = *n1ptr-- + carry; if (tmp >= Libbcmath.BASE) { carry = 1; tmp -= Libbcmath.BASE; } else { carry = 0; } sum.n_value[sumptr--] = tmp; } } // Set final carry. if (carry === 1) { sum.n_value[sumptr] += 1; // *sumptr += 1; } // Adjust sum and return. Libbcmath._bc_rm_leading_zeros(sum); return sum; }, /** * Perform a subtraction * * Perform subtraction: N2 is subtracted from N1 and the value is * returned. The signs of N1 and N2 are ignored. Also, N1 is * assumed to be larger than N2. SCALE_MIN is the minimum scale * of the result. * * Basic school maths says to subtract 2 numbers.. * 1. make them the same length, the decimal places, and the integer part * 2. start from the right and subtract the two numbers from each other * 3. if the sum of the 2 numbers < 0, carry -1 to the next set and add 10 * (ie 18 > carry 1 becomes 8). thus 0.9 + 0.9 = 1.8 * * @param {bc_num} n1 * @param {bc_num} n2 * @param {int} scaleMin * @return bc_num */ _bc_do_sub: function _bc_do_sub(n1, n2, scaleMin) { var diff; // bc_num var diffScale, diffLen; // int var minScale, minLen; // int var n1ptr, n2ptr, diffptr; // int var borrow, count, val; // int // Allocate temporary storage. diffLen = Libbcmath.MAX(n1.n_len, n2.n_len); diffScale = Libbcmath.MAX(n1.n_scale, n2.n_scale); minLen = Libbcmath.MIN(n1.n_len, n2.n_len); minScale = Libbcmath.MIN(n1.n_scale, n2.n_scale); diff = Libbcmath.bc_new_num(diffLen, Libbcmath.MAX(diffScale, scaleMin)); /* Not needed? // Zero extra digits made by scaleMin. if (scaleMin > diffScale) { diffptr = (char *) (diff->n_value + diffLen + diffScale); for (count = scaleMin - diffScale; count > 0; count--) { *diffptr++ = 0; } } */ // Initialize the subtract. n1ptr = n1.n_len + n1.n_scale - 1; n2ptr = n2.n_len + n2.n_scale - 1; diffptr = diffLen + diffScale - 1; // Subtract the numbers. borrow = 0; // Take care of the longer scaled number. if (n1.n_scale !== minScale) { // n1 has the longer scale for (count = n1.n_scale - minScale; count > 0; count--) { diff.n_value[diffptr--] = n1.n_value[n1ptr--]; // *diffptr-- = *n1ptr--; } } else { // n2 has the longer scale for (count = n2.n_scale - minScale; count > 0; count--) { val = 0 - n2.n_value[n2ptr--] - borrow; // val = - *n2ptr-- - borrow; if (val < 0) { val += Libbcmath.BASE; borrow = 1; } else { borrow = 0; } diff.n_value[diffptr--] = val; //* diffptr-- = val; } } // Now do the equal length scale and integer parts. for (count = 0; count < minLen + minScale; count++) { val = n1.n_value[n1ptr--] - n2.n_value[n2ptr--] - borrow; // val = *n1ptr-- - *n2ptr-- - borrow; if (val < 0) { val += Libbcmath.BASE; borrow = 1; } else { borrow = 0; } diff.n_value[diffptr--] = val; //* diffptr-- = val; } // If n1 has more digits then n2, we now do that subtract. if (diffLen !== minLen) { for (count = diffLen - minLen; count > 0; count--) { val = n1.n_value[n1ptr--] - borrow; // val = *n1ptr-- - borrow; if (val < 0) { val += Libbcmath.BASE; borrow = 1; } else { borrow = 0; } diff.n_value[diffptr--] = val; } } // Clean up and return. Libbcmath._bc_rm_leading_zeros(diff); return diff; }, /** * * @param {int} length * @param {int} scale * @return bc_num */ bc_new_num: function bc_new_num(length, scale) { var temp; // bc_num temp = new Libbcmath.bc_num(); // eslint-disable-line new-cap temp.n_sign = Libbcmath.PLUS; temp.n_len = length; temp.n_scale = scale; temp.n_value = Libbcmath.safe_emalloc(1, length + scale, 0); Libbcmath.memset(temp.n_value, 0, 0, length + scale); return temp; }, safe_emalloc: function safe_emalloc(size, len, extra) { return Array(size * len + extra); }, /** * Create a new number */ bc_init_num: function bc_init_num() { return new Libbcmath.bc_new_num(1, 0); // eslint-disable-line new-cap }, _bc_rm_leading_zeros: function _bc_rm_leading_zeros(num) { // We can move n_value to point to the first non zero digit! while (num.n_value[0] === 0 && num.n_len > 1) { num.n_value.shift(); num.n_len--; } }, /** * Convert to bc_num detecting scale */ php_str2num: function php_str2num(str) { var p; p = str.indexOf('.'); if (p === -1) { return Libbcmath.bc_str2num(str, 0); } else { return Libbcmath.bc_str2num(str, str.length - p); } }, CH_VAL: function CH_VAL(c) { return c - '0'; // ?? }, BCD_CHAR: function BCD_CHAR(d) { return d + '0'; // ?? }, isdigit: function isdigit(c) { return isNaN(parseInt(c, 10)); }, bc_str2num: function bc_str2num(strIn, scale) { var str, num, ptr, digits, strscale, zeroInt, nptr; // remove any non-expected characters // Check for valid number and count digits. str = strIn.split(''); // convert to array ptr = 0; // str digits = 0; strscale = 0; zeroInt = false; if (str[ptr] === '+' || str[ptr] === '-') { ptr++; // Sign } while (str[ptr] === '0') { ptr++; // Skip leading zeros. } // while (Libbcmath.isdigit(str[ptr])) { while (str[ptr] % 1 === 0) { // Libbcmath.isdigit(str[ptr])) { ptr++; digits++; // digits } if (str[ptr] === '.') { ptr++; // decimal point } // while (Libbcmath.isdigit(str[ptr])) { while (str[ptr] % 1 === 0) { // Libbcmath.isdigit(str[ptr])) { ptr++; strscale++; // digits } if (str[ptr] || digits + strscale === 0) { // invalid number, return 0 return Libbcmath.bc_init_num(); //* num = bc_copy_num (BCG(_zero_)); } // Adjust numbers and allocate storage and initialize fields. strscale = Libbcmath.MIN(strscale, scale); if (digits === 0) { zeroInt = true; digits = 1; } num = Libbcmath.bc_new_num(digits, strscale); // Build the whole number. ptr = 0; // str if (str[ptr] === '-') { num.n_sign = Libbcmath.MINUS; // (*num)->n_sign = MINUS; ptr++; } else { num.n_sign = Libbcmath.PLUS; // (*num)->n_sign = PLUS; if (str[ptr] === '+') { ptr++; } } while (str[ptr] === '0') { ptr++; // Skip leading zeros. } nptr = 0; // (*num)->n_value; if (zeroInt) { num.n_value[nptr++] = 0; digits = 0; } for (; digits > 0; digits--) { num.n_value[nptr++] = Libbcmath.CH_VAL(str[ptr++]); //* nptr++ = CH_VAL(*ptr++); } // Build the fractional part. if (strscale > 0) { ptr++; // skip the decimal point! for (; strscale > 0; strscale--) { num.n_value[nptr++] = Libbcmath.CH_VAL(str[ptr++]); } } return num; }, cint: function cint(v) { if (typeof v === 'undefined') { v = 0; } var x = parseInt(v, 10); if (isNaN(x)) { x = 0; } return x; }, /** * Basic min function * @param {int} a * @param {int} b */ MIN: function MIN(a, b) { return a > b ? b : a; }, /** * Basic max function * @param {int} a * @param {int} b */ MAX: function MAX(a, b) { return a > b ? a : b; }, /** * Basic odd function * @param {int} a */ ODD: function ODD(a) { return a & 1; }, /** * replicate c function * @param {array} r return (by reference) * @param {int} ptr * @param {string} chr char to fill * @param {int} len length to fill */ memset: function memset(r, ptr, chr, len) { var i; for (i = 0; i < len; i++) { r[ptr + i] = chr; } }, /** * Replacement c function * Obviously can't work like c does, so we've added an "offset" * param so you could do memcpy(dest+1, src, len) as memcpy(dest, 1, src, len) * Also only works on arrays */ memcpy: function memcpy(dest, ptr, src, srcptr, len) { var i; for (i = 0; i < len; i++) { dest[ptr + i] = src[srcptr + i]; } return true; }, /** * Determine if the number specified is zero or not * @param {bc_num} num number to check * @return boolean true when zero, false when not zero. */ bc_is_zero: function bc_is_zero(num) { var count; // int var nptr; // int // Quick check. // if (num === BCG(_zero_)) return TRUE; // Initialize count = num.n_len + num.n_scale; nptr = 0; // num->n_value; // The check while (count > 0 && num.n_value[nptr++] === 0) { count--; } if (count !== 0) { return false; } else { return true; } }, bc_out_of_memory: function bc_out_of_memory() { throw new Error('(BC) Out of memory'); } }; return Libbcmath; }; //# sourceMappingURL=_bc.js.map