blob: ffae4bbcdb201796281aa01f3c59ba8eb54d7387 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no" />
<title>reveal.js</title>
<link rel="stylesheet" href="css/reset.css" />
<link rel="stylesheet" href="css/reveal.css" />
<link rel="stylesheet" href="css/theme/black.css" />
<link rel="stylesheet" href="css/style.css" />
<!-- Theme used for syntax highlighting of code -->
<link rel="stylesheet" href="lib/css/monokai.css" />
<!-- Printing and PDF exports -->
<script>
const link = document.createElement("link");
link.rel = "stylesheet";
link.type = "text/css";
link.href = window.location.search.match(/print-pdf/gi) ? "css/print/pdf.css" : "css/print/paper.css";
document.getElementsByTagName("head")[0].appendChild(link);
</script>
</head>
<body>
<div class="reveal">
<div class="slides">
<section>
<h1>Das Koch Fraktal</h1>
<small>Von Marvin Borner, TGI 12.1</small>
</section>
<section>
<h3>Gliederung</h3>
<ol>
<li>Fraktale</li>
<li>Koch Fraktal</li>
<li>Varianten des Koch Fraktals</li>
<!-- engl. Wikipedia -->
<li>Umfang des Koch Fraktals</li>
<li>Fläche des Koch Fraktals</li>
</ol>
</section>
<section>
<h3>Fraktale</h3>
</section>
<section>
<!-- Vorstellung -->
<section>
<h3>Regeln</h3>
<ol>
<li>Mit einer geraden Linie starten</li>
<li>Linie in drei Teile aufteilen</li>
<li>Den mittleren Teil der Linie "radieren"</li>
<li>Den mittleren Teil zu einem gleichseitigen Dreieck verbinden</li>
</ol>
</section>
<section>
<div id="iterationCtr"></div>
<div class="flexContainer">
<canvas id="koch"></canvas>
</div>
</section>
</section>
<section>
<!-- Mit zwei browsern visualisieren (tiling!) -->
<section>
<h3>Umfang des Koch Fraktals</h3>
<div class="fragment fade-right" style="float: left;">
<p>Anzahl der Linien:</p>
<p>\[ N_n = N_{n-1} \cdot 4 = 4^n \]</p>
</div>
<div class="fragment fade-left" style="float: right;">
<p>Länge der Linien:</p>
<p>\[ S_n = \frac{S_{n-1}}{3} = \frac{s}{3^n} \]</p>
</div>
<div data-action="nebenrechnung" class="fragment fade-up" style="float: left;">
<p>Umfang:</p>
<p>\[ P_n = N_n\cdot S_n = s\cdot\left(\frac{4}{3}\right)^n \]</p>
</div>
<div class="fragment fade-up" style="float: right;">
<p>Grenzwert:</p>
<p>\[ \lim_{n\to\infty}P_n = \infty \]</p>
</div>
<span data-action="gooo" class="fragment" style="display: none !important;"></span>
</section>
<section>
<h3>Nebenrechnung</h3>
<p class="fragment fade-up">\[ N_n = N_{n-1} \cdot 4 = 4^n \]</p>
<p class="fragment fade-up">\[ S_n = \frac{S_{n-1}}{3} = \frac{s}{3^n} \]</p>
<p class="fragment fade-up">
\[ P_n = N_n\cdot S_n = 4^n \cdot \frac{s}{3^n} = \frac{s \cdot 4^n}{3^n} = s \cdot
\frac{4^n}{3^n} \]
</p>
<span data-action="umfang-back" class="fragment" style="display: none !important;"></span>
</section>
</section>
<section>
<h3>Summenzeichen</h3>
<p>\[ \sum_{x=1}^{5} x^2 \]</p>
<p class="fragment fade-up">\[ = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55 \]</p>
</section>
<section>
<h3>Fläche des Koch Fraktals</h3>
</section>
<section>
<h3>Varianten des Koch Fraktals</h3>
<img
class="plain"
style="background: none;"
src="imgs/KochFlake.svg"
alt="Hier könnte ihre Werbung stehen!"
/>
</section>
<section>
<h3>Fläche des Koch Fraktals</h3>
</section>
<section>
<h3>Quellen</h3>
<p>Bilder</p>
<a href="https://en.wikipedia.org/wiki/Koch_snowflake#/media/File:KochFlake.svg" target="_blank">
https://en.wikipedia.org/wiki/Koch_snowflake#/media/File:KochFlake.svg
</a>
<p>Wissen</p>
<a href="https://en.wikipedia.org/wiki/Koch_snowflake" target="_blank">
https://en.wikipedia.org/wiki/Koch_snowflake
</a>
<a
href="http://www.mathematik.uni-ulm.de/stochastik/lehre/ws06_07/seminar_fraktale/daikeler.pdf"
target="_blank"
>
http://www.mathematik.uni-ulm.de/stochastik/lehre/ws06_07/seminar_fraktale/daikeler.pdf
</a>
</section>
</div>
</div>
<script src="js/reveal.js"></script>
<script src="js/main.js"></script>
</body>
</html>
|