aboutsummaryrefslogtreecommitdiffhomepage
path: root/notes/algo
diff options
context:
space:
mode:
Diffstat (limited to 'notes/algo')
-rw-r--r--notes/algo/header.tex68
-rw-r--r--notes/algo/main.md1228
-rw-r--r--notes/algo/main.pdfbin388448 -> 0 bytes
-rw-r--r--notes/algo/makefile23
-rw-r--r--notes/algo/title.tex23
5 files changed, 0 insertions, 1342 deletions
diff --git a/notes/algo/header.tex b/notes/algo/header.tex
deleted file mode 100644
index 3709c26..0000000
--- a/notes/algo/header.tex
+++ /dev/null
@@ -1,68 +0,0 @@
-\usepackage{braket}
-\usepackage{polynom}
-\usepackage{amsthm}
-\usepackage{csquotes}
-\usepackage{svg}
-\usepackage{environ}
-\usepackage{mathtools}
-\usepackage{tikz,pgfplots}
-\usepackage{titleps}
-\usepackage{tcolorbox}
-\usepackage{enumitem}
-\usepackage{listings}
-\usepackage{soul}
-\usepackage{forest}
-
-\pgfplotsset{width=10cm,compat=1.15}
-\usepgfplotslibrary{external}
-\usetikzlibrary{calc,trees,positioning,arrows,arrows.meta,fit,shapes,chains,shapes.multipart}
-%\tikzexternalize
-\setcounter{MaxMatrixCols}{20}
-\graphicspath{{assets}}
-
-\newpagestyle{main}{\sethead{\toptitlemarks\thesection\quad\sectiontitle}{}{\thepage}\setheadrule{.4pt}}
-\pagestyle{main}
-
-\newtcolorbox{proof-box}{title=Proof,colback=green!5!white,arc=0pt,outer arc=0pt,colframe=green!60!black}
-\newtcolorbox{bsp-box}{title=Example,colback=orange!5!white,arc=0pt,outer arc=0pt,colframe=orange!60!black}
-\newtcolorbox{visu-box}{title=Visualisation,colback=cyan!5!white,arc=0pt,outer arc=0pt,colframe=cyan!60!black}
-\newtcolorbox{bem-box}{title=Note,colback=gray!5!white,arc=0pt,outer arc=0pt,colframe=gray!60!black}
-\newtcolorbox{prob-box}{title=Problem,colback=gray!5!white,arc=0pt,outer arc=0pt,colframe=gray!60!black}
-\NewEnviron{splitty}{\begin{displaymath}\begin{split}\BODY\end{split}\end{displaymath}}
-
-\newcommand\toprove{\textbf{Zu zeigen: }}
-
-\newcommand\N{\mathbb{N}}
-\newcommand\R{\mathbb{R}}
-\newcommand\Z{\mathbb{Z}}
-\newcommand\Q{\mathbb{Q}}
-\newcommand\C{\mathbb{C}}
-\renewcommand\P{\mathbb{P}}
-\renewcommand\O{\mathcal{O}}
-\newcommand\pot{\mathcal{P}}
-\newcommand{\cupdot}{\mathbin{\mathaccent\cdot\cup}}
-\newcommand{\bigcupdot}{\dot{\bigcup}}
-
-\DeclareMathOperator{\ggT}{ggT}
-\DeclareMathOperator{\kgV}{kgV}
-
-\newlist{abc}{enumerate}{10}
-\setlist[abc]{label=(\alph*)}
-
-\newlist{num}{enumerate}{10}
-\setlist[num]{label=\arabic*.}
-
-\newlist{rom}{enumerate}{10}
-\setlist[rom]{label=(\roman*)}
-
-\makeatletter
-\renewenvironment{proof}[1][\proofname] {\par\pushQED{\qed}\normalfont\topsep6\p@\@plus6\p@\relax\trivlist\item[\hskip\labelsep\bfseries#1\@addpunct{.}]\ignorespaces}{\popQED\endtrivlist\@endpefalse}
-\makeatother
-\def\qedsymbol{\sc q.e.d.} % hmm?
-
-\lstset{
- basicstyle=\ttfamily,
- escapeinside={(*@}{@*)},
- numbers=left,
- mathescape
-}
diff --git a/notes/algo/main.md b/notes/algo/main.md
deleted file mode 100644
index 88b3e3c..0000000
--- a/notes/algo/main.md
+++ /dev/null
@@ -1,1228 +0,0 @@
----
-author: Marvin Borner
-date: "`\\today`{=tex}"
-lang: en-US
-pandoc-latex-environment:
- bem-box:
- - bem
- bsp-box:
- - bsp
- prob-box:
- - prob
- proof-box:
- - proof
- visu-box:
- - visu
-toc-title: Content
----
-
-```{=tex}
-\newpage
-\renewcommand\O{\mathcal{O}} % IDK WHY
-```
-# Tricks
-
-## Logarithms
-
-$$\log_a(x)=\frac{\log_b(x)}{\log_b(a)}$$
-
-# Big-O-Notation
-
-- $f\in\O(g)$: $f$ is of order at most $g$:
- $$0\ge\limsup_{n\to\infty}\frac{f(n)}{g(n)}<\infty$$
-- $f\in\Omega(g)$: $f$ is of order at least $g$:
- $$0<\liminf_{n\to\infty}\frac{f(n)}{g(n)}\le\infty\iff g\in\O(f)$$
-- $f\in o(g)$: $f$ is of order strictly smaller than $g$:
- $$0\ge\limsup_{n\to\infty}\frac{f(n)}{g(n)}=0$$
-- $f\in\omega(g)$: $f$ is of order strictly larger than $g$:
- $$\liminf_{n\to\infty}\frac{f(n)}{g(n)}=\infty\iff g\in o(f)$$
-- $f\in\Theta(g)$: $f$ has exactly the same order as $g$:
- $$0<\liminf_{n\to\infty}\frac{f(n)}{g(n)}\le\limsup_{n\to\infty}\frac{f(n)}{g(n)}<\infty\iff f\in\O(g)\land f\in\Omega(g)$$
-
-## Naming
-
-- linear $\implies\Theta(n)$
-- sublinear $\implies o(n)$
-- superlinear $\implies\omega(n)$
-- polynomial $\implies\Theta(n^a)$
-- exponential $\implies\Theta(2^n)$
-
-## Rules
-
-- $f\in\O(g_1 + g_2)\land g_1\in\O(g_2)\implies f\in\O(g_2)$
-- $f_1\in\O(g_1)\land f_2\in\O(g_2)\implies f_1+f_2\in\O(g_1+g_2)$
-- $f\in g_1\O(g_2)\implies f\in\O(g_1g_2)$
-- $f\in\O(g_1),g_1\in\O(g_2)\implies f\in\O(g_2)$
-
-# Divide and conquer
-
-::: prob
-Given two integers $x$ and $y$, compute their product $x\cdot y$.
-:::
-
-We know that $x=2^{n/2}x_l+x_r$ and $y=2^{n/2}y_l+y_r$.
-
-We use the following equality:
-$$(x_ly_r+x_ry_l)=(x_l+x_r)(y_l+y_r)-x_ly_l-x_ry_r$$ leading to
-`\begin{align*} x\cdot y&=2^nx_ly_l+2^{n/2}(x_ly_r+x_ry_l)+x_ry_r\\ &=2^nx_ly_l+2^{n/2}((x_l+x_r)(y_l+y_r)-x_ly_l-x_ry_r)+x_ry_r\\ &=2^{n/2}x_ly_l+(1-2^{n/2})x_ry_r+2^{n/2}(x_l+x_r)(y_ly_r). \end{align*}`{=tex}
-Therefore we get the same result with 3 instead of 4 multiplications.
-
-**If we apply this principle once:** Running time of $(3/4)n^2$ instead
-of $n^2$.
-
-**If we apply this principle recursively:** Running time of
-$\O(n^{\log_23})\approx\O(n^{1.59})$ instead of $n^2$ (calculated using
-the height of a recursion tree).
-
-## Recursion tree
-
-::: visu
-```{=tex}
-\begin{center}\begin{forest}
- [,circle,draw
- [,circle,draw [\vdots] [\vdots] [\vdots] [\vdots]]
- [,circle,draw [\vdots] [\vdots] [\vdots] [\vdots]]
- [,circle,draw [\vdots] [\vdots] [\vdots] [\vdots]]
- [,circle,draw [\vdots] [\vdots] [\vdots] [\vdots]]
- ]
-\end{forest}\end{center}
-```
-:::
-
-- Level $k$ has $a^k$ problems of size $\frac{n}{b^k}$
-- Total height of tree: $\lceil\log_bn\rceil$
-- Number of problems at the bottom of the tree is
- $a^{\log_bn}=n^{\log_ba}$
-- Time spent at the bottom is $\Theta(n^{\log_ba})$
-
-## Master theorem
-
-If $T(n)=aT(\lceil n/b\rceil)+\O(n^d)$ for constants $a>0$, $b>1$ and
-$d\ge0$, then
-$$T(n)=\begin{cases}\O(n^d)&d>\log_ba\\\O(n^d\log_n)&d=log_ba\\\O(n^{log_ba})&d<\log_ba\end{cases}$$
-
-::: bsp
-Previous example of clever integer multiplication:
-$$T(n)=3T(n/2)+\O(n)\implies T(n)=\O(n^{\log_23})$$
-:::
-
-# Arrays and lists
-
-## Array
-
-- needs to be allocated in advance
-- read/write happens in constant time (using memory address)
-
-## Doubly linked list
-
-::: visu
-```{=tex}
-\begin{center}\begin{tikzpicture}
- [
- double link/.style n args=2{
- on chain,
- rectangle split,
- rectangle split horizontal,
- rectangle split parts=2,
- draw,
- anchor=center,
- text height=1.5ex,
- node contents={#1\nodepart{two}#2},
- },
- start chain=going right,
- ]
- \node [on chain] {NIL};
- \node [join={by <-}, double link={a}{b}];
- \node [join={by <->}, double link={c}{d}];
- \node (a) [join={by <->}, double link={e}{f}];
- \node (b) [on chain, right=2.5pt of a.east] {$\cdots$};
- \node [double link={y}{z}, right=2.5pt of b.east];
- \node [join={by ->}, on chain] {NIL};
-\end{tikzpicture}\end{center}
-```
-:::
-
-NIL can be replaced by a sentinel element, basically linking the list to
-form a loop.
-
-### Basic operations
-
-- **Insert**: If the current pointer is at $e$, inserting $x$ after
- $e$ is possible in $\O(1)$.
-- **Delete**: If the current pointer is at $e$, deleting $x$ before
- $e$ is possible in $\O(1)$.
-- **Find element with key**: We need to walk through the whole list
- $\implies\O(n)$
-- **Delete a whole sublist**: If you know the first and last element
- of the sublist: $\O(1)$
-- **Insert a list after element**: Obviously also $\O(1)$
-
-## Singly linked list
-
-::: visu
-```{=tex}
-\begin{center}\begin{tikzpicture}
- [
- link/.style n args=2{
- on chain,
- rectangle split,
- rectangle split horizontal,
- rectangle split parts=2,
- draw,
- anchor=center,
- text height=1.5ex,
- node contents={#1\nodepart{two}#2},
- },
- start chain=going right,
- ]
- \node [on chain] {head};
- \node [join={by ->}, link={a}{b}];
- \node [join={by ->}, link={c}{d}];
- \node (a) [join={by ->}, link={e}{f}];
- \node (b) [on chain, right=2.5pt of a.east] {$\cdots$};
- \node [link={y}{z}, right=2.5pt of b.east];
- \node [join={by ->}, on chain] {NIL};
-\end{tikzpicture}\end{center}
-```
-:::
-
-- needs less storage
-- no constant time deletion $\implies$ not good
-
-# Trees
-
-::: visu
-```{=tex}
-\begin{center}\begin{forest}
- [root,circle,draw
- [a,circle,draw [b,circle,draw] [,circle,draw [,circle,draw]]]
- [,circle,draw [,phantom] [,phantom]]
- [,circle,draw [,circle,draw] [,circle,draw]]]
-\end{forest}\end{center}
-```
-- (a) is the parent/predecessor of (b)
-
-- (b) is a child of (a)
-:::
-
-- *Height of a vertex*: length of the shortest path from the vertex to
- the root
-- *Height of the tree*: maximum vertex height in the tree
-
-## Binary tree
-
-- each vertex has at most 2 children
-- *complete* if all layers except the last one are filled
-- *full* if the last level is filled completely
-
-::: visu
-```{=tex}
-\begin{minipage}{0.5\textwidth}\begin{center}
-\textbf{Complete}\bigskip\\
-\begin{forest}
- [,circle,draw
- [,circle,draw
- [,circle,draw [,circle,draw] [,circle,draw]]
- [,circle,draw [,circle,draw]]]
- [,circle,draw [,circle,draw] [,circle,draw]]]
-\end{forest}\end{center}\end{minipage}%
-\begin{minipage}{0.5\textwidth}\begin{center}
-\textbf{Full}\bigskip\\
-\begin{forest}
- [,circle,draw
- [,circle,draw
- [,circle,draw]
- [,circle,draw]]
- [,circle,draw [,circle,draw] [,circle,draw]]]
-\end{forest}\end{center}\end{minipage}
-```
-:::
-
-### Height of binary tree
-
-- Full binary tree with $n$ vertices: $\log_2(n+1)-1\in\Theta(\log n)$
-- Complete binary tree with $n$ vertices:
- $\lceil\log_2(n+1)-1\rceil\in\Theta(\log n)$
-
-### Representation
-
-- Complete binary tree: Array with entries layer by layer
-- Arbitrary binary tree: Each vertex contains the key value and
- pointers to left, right, and parent vertices
- - Elegant: Each vertex has three pointers: A pointer to its
- parent, leftmost child, and right sibling
-
-# Stack and Queue
-
-## Stack
-
-- Analogy: Stack of books to read
-- `Push(x)` inserts the new element $x$ to the stack
-- `Pop()` removes the next element from the stack (LIFO)
-
-### Implementation
-
-- Array with a pointer to the current element, `Push` and `Pop` in
- $\O(1)$
-- Doubly linked list with pointer to the end of the list
-- Singly linked list and insert elements at the beginning of the list
-
-## Queue
-
-- Analogy: waiting line of customers
-- `Enqueue(x)` insertes the new element $x$ to the end of the queue
-- `Dequeue()` removes the next element from the queue (FIFO)
-
-### Implementation
-
-- Array with two pointers, one to the head and one to the tail
- $\implies$ `Enqueue`/`Dequeue` in $\O(1)$
-- Linked lists
-
-# Heaps and priority queues
-
-## Heaps
-
-- Data structure that stores elements as vertices in a tree
-- Each element has a key value assigned to it
-- Max-heap property: all vertices in the tree satisfy
- $$\mathrm{key}(\mathrm{parent}(v))\ge\mathrm{key}(v)$$
-
-::: visu
-```{=tex}
-\begin{center}\begin{forest}
- [7,circle,draw
- [5,circle,draw [1,circle,draw] [3,circle,draw [1,circle,draw] [2,circle,draw] [3,circle,draw]]]
- [1,circle,draw [,phantom] [,phantom]]
- [2,circle,draw [1,circle,draw] [0,circle,draw]]]
-\end{forest}\end{center}
-```
-:::
-
-- Binary heap:
- - Each vertex has at most two children
- - Layers must be finished before starting a new one (left to right
- insertion)
- - Advantage:
- - Control over height/width of tree
- - easy storage in array without any pointers
-
-### Usage
-
-- Compromise between a completely unsorted and completely sorted array
-- Easier to maintain/build than a sorted array
-- Useful for many other data structures (e.g. priority queue)
-
-### `Heapify`
-
-The `Heapify` operation can repair a heap with a violated heap property
-($\mathrm{key}(i)<\mathrm{key}(\mathrm{child}(i))$ for some vertex $i$
-and at least one child).
-
-::: visu
-```{=tex}
-\begin{center}\begin{forest}
- [2,circle,draw
- [7,circle,draw,tikz={\node [draw,black!60!green,fit to=tree] {};}
- [4,circle,draw [3,circle,draw] [3,circle,draw]]
- [1,circle,draw]]
- [,phantom,circle,draw]
- [,phantom,circle,draw]
- [6,circle,draw,tikz={\node [draw,black!60!green,fit to=tree] {}; \draw[<-,black!60!green] (.east)--++(2em,0pt) node[anchor=west,align=center]{Not violated!};}
- [5,circle,draw [2,circle,draw]]]] {
- \draw[<-,red] (.east)--++(2em,0pt) node[anchor=west,align=center]{Violated!};
- }
-\end{forest}\end{center}
-```
-:::
-
-**Procedure**: "Let key($i$) float down"
-
-- Swap $i$ with the larger of its children
-- Recursively call `heapify` on this child
-- Stop when heap condition is no longer violated
-
-::: visu
-```{=tex}
-\begin{minipage}{0.33\textwidth}\begin{center}\textbf{1.}\\\begin{forest}
- [2,circle,draw
- [7,circle,draw
- [4,circle,draw [3,circle,draw] [3,circle,draw]]
- [1,circle,draw]] {\draw[<->] () .. controls +(north west:0.6cm) and +(west:1cm) .. (!u);}
- [,phantom,circle,draw]
- [,phantom,circle,draw]
- [6,circle,draw
- [5,circle,draw [2,circle,draw]]]]
-\end{forest}\end{center}\end{minipage}%
-\begin{minipage}{0.33\textwidth}\begin{center}\textbf{2.}\\\begin{forest}
- [7,circle,draw
- [2,circle,draw
- [4,circle,draw [3,circle,draw] [3,circle,draw]] {\draw[<->] () .. controls +(north west:0.6cm) and +(west:1cm) .. (!u);}
- [1,circle,draw]]
- [,phantom,circle,draw]
- [,phantom,circle,draw]
- [6,circle,draw
- [5,circle,draw [2,circle,draw]]]]
-\end{forest}\end{center}\end{minipage}%
-\begin{minipage}{0.33\textwidth}\begin{center}\textbf{3.}\\\begin{forest}
- [7,circle,draw
- [4,circle,draw
- [2,circle,draw
- [3,circle,draw] {\draw[<->] () .. controls +(north west:0.6cm) and +(west:1cm) .. (!u);}
- [3,circle,draw]]
- [1,circle,draw]]
- [,phantom,circle,draw]
- [,phantom,circle,draw]
- [6,circle,draw
- [5,circle,draw [2,circle,draw]]]]
-\end{forest}\end{center}\end{minipage}%
-```
-:::
-
-**Worst case running time**:
-
-- Number of swapping operations is at most the height of the tree
-- Height of tree is at most $h=\lceil\log(n)\rceil=\O(\log n)$
-- Swapping is in $\O(1) \implies$ worst case running time is
- $\O(\log n)$
-
-### `DecreaseKey`
-
-The `DecreseKey` operation *decreases* the key value of a particular
-element in a correct heap.
-
-**Procedure**:
-
-- Decrease the value of the key at index $i$ to new value $b$
-- Call `heapify` at $i$ to let it bubble down
-
-**Running time**: $\O(\log n)$
-
-### `IncreaseKey`
-
-The `IncreseKey` operation *increases* the key value of a particular
-element in a correct heap.
-
-**Procedure**:
-
-- Increase the value of the key at index $i$ to new value $b$
-- Walk upwards to the root, exchaning the key values of a vertex and
- its parent if the heap property is violated
-
-**Running time**: $\O(\log n)$
-
-::: visu
-`IncreaseKey` from 4 to 15:
-
-```{=tex}
-\vspace{.5cm}
-\begin{minipage}{0.33\textwidth}\begin{center}\textbf{1.}\\\begin{forest}
- [16,circle,draw
- [14,circle,draw
- [8,circle,draw
- [2,circle,draw]
- [4,circle,draw,red!60!black]]
- [7,circle,draw
- [1,circle,draw]]]
- [10,circle,draw
- [9,circle,draw]
- [3,circle,draw]]]
-\end{forest}\end{center}\end{minipage}%
-\begin{minipage}{0.33\textwidth}\begin{center}\textbf{2.}\\\begin{forest}
- [16,circle,draw
- [14,circle,draw
- [8,circle,draw
- [2,circle,draw]
- [15,circle,draw,red!60!black]]
- [7,circle,draw
- [1,circle,draw]]]
- [10,circle,draw
- [9,circle,draw]
- [3,circle,draw]]]
-\end{forest}\end{center}\end{minipage}%
-\begin{minipage}{0.33\textwidth}\begin{center}\textbf{3.}\\\begin{forest}
- [16,circle,draw
- [14,circle,draw
- [8,circle,draw
- [2,circle,draw]
- [15,circle,draw,red!60!black] {\draw[<->] () .. controls +(north east:0.6cm) and +(east:1cm) .. (!u);}]
- [7,circle,draw
- [1,circle,draw]]]
- [10,circle,draw
- [9,circle,draw]
- [3,circle,draw]]]
-\end{forest}\end{center}\end{minipage}\bigskip\\
-\begin{minipage}{0.5\textwidth}\begin{center}\textbf{4.}\\\begin{forest}
- [16,circle,draw
- [14,circle,draw
- [15,circle,draw,red!60!black
- [2,circle,draw]
- [8,circle,draw]] {\draw[<->] () .. controls +(north west:0.6cm) and +(west:1cm) .. (!u);}
- [7,circle,draw
- [1,circle,draw]]]
- [10,circle,draw
- [9,circle,draw]
- [3,circle,draw]]]
-\end{forest}\end{center}\end{minipage}%
-\begin{minipage}{0.5\textwidth}\begin{center}\textbf{5.}\\\begin{forest}
- [16,circle,draw
- [15,circle,draw,red!60!black
- [14,circle,draw
- [2,circle,draw]
- [8,circle,draw]]
- [7,circle,draw
- [1,circle,draw]]]
- [10,circle,draw
- [9,circle,draw]
- [3,circle,draw]]]
-\end{forest}\end{center}\end{minipage}%
-```
-:::
-
-### `ExtractMax`
-
-The `ExtractMax` operation *removes* the largest element in a correct
-heap.
-
-**Procedure**:
-
-- Extract the root element (the largest element)
-- Replace the root element by the last leaf in the tree and remove
- that leaf
-- Call `heapify(root)`
-
-**Running time**: $\O(\log n)$
-
-### `InsertElement`
-
-The `InsertElement` operation *inserts* a new element in a correct heap.
-
-**Procedure**:
-
-- Insert it at the next free position as a leaf, asiign it the key
- $-\infty$
-- Call `IncreaseKey` to set the key to the given value
-
-**Running time**: $\O(\log n)$
-
-### `BuildMaxHeap`
-
-The `BuildMaxHeap` operation makes a heap out of an unsorted array A of
-$n$ elements.
-
-**Procedure**:
-
-- Write all elements in the tree in any order
-- Then, starting from the leafs, call `heapify` on each vertex
-
-**Running time**: $\O(n)$
-
-# Priority queue
-
-Maintains a set of prioritized elements. The `Dequeue` operation returns
-the element with the largest priority value. `Enqueue` and `IncreaseKey`
-work as normal.
-
-## Implementation
-
-Typically using a heap:
-
-- Building the heap is $\O(n)$
-- Enqueue: heap `InsertElement`, $\O(\log n)$
-- Dequeue: heap `ExtractMax`, $\O(\log n)$
-- `IncreaseKey`, `DecreaseKey`: $\O(\log n)$
-
-"Fibonacci heaps" can achieve `DecreaseKey` in $\O(1)$.
-
-# Hashing
-
-**Idea**:
-
-- Store data that is assigned to particular key values
-- Give a "nickname" to each of the key values
-- Choose the space of nicknames reasonably small
-- Have a way to compute "nicknames" from the keys themselves
-- Store the information in an array (size = #nicknames)
-
-**Formally**:
-
-- **Universe $U$**: All possible keys, actually used key values are
- much less ($m < |U|$)
-- **Hash function**: $h: U\to\{1,...,m\}$
-- **Hash values**: $h(k)$ (slot)
-- **Collision**: $h(k_1)=h(k_2),\ k_1\ne k_2$
-
-## Simple hash function
-
-If we want to hash $m$ elements in universe $\N$: $$h(k)=k\pmod{m}$$
-
-For $n$ slots generally choose $m$ using a prime number $m_p>n$
-
-## Hashing with chaining
-
-Method to cope with collisions:
-
-Each hash table entry points to a linked list containing all elements
-with this particular hash key - collisions make the list longer.
-
-We might need to traverse this list to retrieve a particular element.
-
-## Hashing with open addressing
-
-(**Linear probing**)
-
-All empty slots get marked as empty
-
-**Inserting a new key into $h(k)$:**
-
-- If unused, insert at $h(k)$
-- If used, try insert at $h(k)+1$
-
-**Retrieving elements**: Walk from $h(k)$
-
-- If we find the key: Yay
-- If we hit the empty marker: Nay
-
-**Removing elements:**
-
-- Another special symbol marker..
-- Or move entries up that would be affected by the "hole" in the array
-
-# Graph algorithms
-
-## Graphs
-
-A graph $G=(V,E)$ consists of a set of vertices $V$ and a set of edges
-$E\subset V\times V$.
-
-- edges can be **directed** $(u,v)$ or **undirected** $\{u,v\}$
-- $u$ is **adjacent** to $v$ if there exists an edge between $u$ and
- $v$: $u\sim v$ or $u\to v$
-- edges can be **weighted**: $w(u,v)$
-- undirected **degree of a vertex**:
- $$d_v:=d(v):=\sum_{v\sim u}w_{vu}$$
-- directed **in-/out-degree of a vertex**:
- $$d_in=\sum_{\{u: u\to v\}}w(u,v)$$
- $$d_out=\sum_{\{u: v\to u\}}w(v,y)$$
-- number of vertices: $n=|V|$
-- number of edges: $m=|E|$
-- **simple** path if each vertex occurs at most once
-- **cycle** path if it end in the vertex where it started from and
- uses each edge at most once
-- **strongly connected** directed graph if for all $u,v\in V,\ u\ne v$
- exists a directed path from $u$ to $v$ and a directed path from $v$
- to $u$
-- **acyclic** graph if it does not contain any cycles (**DAG** if
- directed)
-- **bipartite** graph if its vertex set can be decomposed into two
- disjoint subsets such that all edges are only between them
-
-### Representation
-
-- Unordered edge list: For each edge, encode start and end point
-- Adjacency matrix:
- - $n\times n$ matrix that contains entries $a_{ij}=1$ if there is
- a directed edge from vertex $i$ to vertex $j$
- - if weighted, $a_{ij}=w{ij}$
- - **implementation** using $n$ arrays of length $n$
- - adjacency test in $\O(1)$
- - space usage $n^2$
-- Adjacency list:
- - for each vertex, store a list of all outgoing edges
- - if the edges are weighted, store the weight additionally in the
- list
- - sometimes store both incoming and outgoing edges
- - **implementation** using an array with list pointers or using a
- list for each vertex that encodes outgoing edges
-
-**Typical choice**:
-
-- *dense* graphs: adjacency matrices tend to be easier.
-- *sparse* graphs: adjacency lists
-
-## Depth first search
-
-**Idea**: Starting at a arbitrary vertex, jump to one of its neighbors,
-then one of his neighbors etc., never visiting a vertex twice. At the
-end of the chain we backtrack and walk along another chain.
-
-**Running time**
-
-- graph: $\O(|V|+|E|)$
-- adjacency matrix: $\O(|V|^2)$
-
-**Algorithm**:
-
-```{=tex}
-\begin{lstlisting}
-function DFS(G)
- for all $u\in V$
- u.color = white # not visited yet
- for all $u\in V$
- if u.color == white
- DFS-Visit(G, u)
-
-function DFS-Visit(G, u)
- u.color = grey # in process
- for all $v\in\mathrm{Adj}(u)$
- if v.color == white
- v.pre = u # just for analysis
- DFS-Visit(G, v)
- u.color = black # done!
-\end{lstlisting}
-```
-## Strongly connected components
-
-**Component graph $G^{SCC}$** of a directed graph:
-
-- vertices of $G^{SCC}$ correspond to the components of $G$
-- edge between vertices $A$ and $B$ in $G^{GCC}$ if vertices $u$ and
- $v$ in connected components represented by $A$ and $B$ such that
- there is an edge from $u$ to $v$
-- $G^{SCC}$ is a DAG for any directed graph $G$
-- **sink** component if the vertex in $G^{SCC}$ does not have an
- out-edge
-- **source** component if the vertex in $G^{SCC}$ does not have an
- in-edge
-
-## DFS in sink components
-
-With sink component $B$:
-
-- `DFS` on $G$ in vertex $u\in B$: `DFS-Visit` tree covers the whole
- component $B$
-- `DFS` on $G$ in vertex $u$ non-sink: `DFS-Visit` tree covers more
- than this component
-
-$\implies$ use DFS to discover SCCs
-
-## Finding sources
-
-- **discovery time $d(u)$**: time when DFS first visits $u$
-- **finishing time $f(u)$**: time when DFS is done with $u$
-
-Also: $d(A)=\min_{u\in A}d(u)$ and $f(A)=\max_{u\in A}f(u)$.
-
-Let $A$ and $B$ be two SCCs of $G$ and assume that $B$ is a descendent
-of $A$ in $G^{SCC}$. Then $f(B)<f(A)$ always.
-
-Assume we run DFS on $G$ (with any starting vertex) and record the
-finishing times of all vertices. Then the vertex with the largest
-finishing time is in a source component.
-
-## Converting sources to sinks
-
-Reversing the graph: we consider the graph $G^t$ which has the same
-vertices as $G$ but all edges with reversed directions. Note that $G^t$
-has the same SCCs as $G$.
-
-We can then use the source-finding algorithm to find sinks by first
-reversing the graph.
-
-## Finding SCCs
-
-- run DFS on $G$ with any arbitrary starting vertex. The vertex $u^*$
- with the largest $f(u)$ is in a source of $G^{SCC}$
-- the vertex $u^*$ is in a sink of $(G^t)^{SCC}$
-- start a second DFS on $u*$ in $G^t$. The tree discovered by
- $\mathrm{DFS}(G^t,u^*)$ is the first SCC
-- continue with DFS on the remaining vertices $V=v*$ with the highest
- $f(u)$
-- etc.
-
-**Running time**:
-
-- DFS twice: $\O(|V|+|E|)$
-- reverse: $\O(|E|)$
-- order the vertices by $f(u)$: $\O(|V|)$
-- $\implies \O(|V|+|E|)$
-
-## Cycle detection
-
-A directed graph has a cycle iff its DFS reveals a back edge (to a
-previously visited vertex).
-
-## Topological sort
-
-A **topological sort** of a directed graph is a linear ordering of its
-vertices such that whenever there exists a directed edge from vertex $u$
-to vertex $v$, $u$ comes before $v$ in the ordering.
-
-Every DAG has a topological sort.
-
-**Procedure**:
-
-- run DFS with an arbitrary starting vertex
-- if the DFS reveals a back edge, topological sort doesn't exist
-- otherwise, sort the vertices by decreasing finishing times
-
-## Breadth first search
-
-DFS has inefficiency problems with some specific graph structures.
-
-BFS explores the local neighborhood first.
-
-DFS uses a stack, BFS uses a queue.
-
-**Algorithm**:
-
-```{=tex}
-\begin{lstlisting}
-function BFS(G)
- for all $u\in V$
- u.color = white # not visited yet
- for all $s\in V$
- if s.color == white
- BFS-Visit(G, s)
-
-function BFS-Visit(G, s)
- u.color = grey # in process
- Q = [s] # queue containing s
- while Q $\ne\emptyset$
- u = dequeue(Q)
- for all $v\in\mathrm{Adj}(u)$
- if v.color == white
- v.color = grey
- enqueue(Q, v)
- u.color = black
-\end{lstlisting}
-```
-**Running time**:
-
-- $\O(|E|+|V|)$ in adjacency list
-- $\O(|V|^2)$ in adjacency matrix
-
-## Shortest path problem (unweighted)
-
-$$d(u,v)=\min\{l(\pi)\mid\pi\text{ path between $u$ and $v$}\}$$
-
-Simple **algorithm** using BFS:
-
-```{=tex}
-\begin{lstlisting}
-function BFS(G)
- for all $u\in V\setminus\{s\}$
- u.color = white # not visited yet
- (*@\hl{u.dist = $\infty$}@*)
- (*@\hl{s.dist = 0}@*)
- s.color = grey # in process
- Q = [s] # queue containing s
- while Q $\ne\emptyset$
- u = dequeue(Q)
- for all $v\in\mathrm{Adj}(u)$
- if v.color == white
- v.color = grey
- (*@\hl{v.dist = u.dist + 1}@*)
- enqueue(Q, v)
- u.color = black
-\end{lstlisting}
-```
-Other **algorithm** using BFS, easily provable:
-
-```{=tex}
-\begin{lstlisting}
-function BFS(s)
- d = [$\infty$, ...,$\infty$]
- parent = [$bot$, ..., $bot$]
- d[s] = s
- Q = {s}
- Q' = {s}
- for l = 0 to $\infty$ while $Q\ne\emptyset$ do
- for each $u\in Q$ do
- for each $(u,v)\in E$ do
- if parent(v) = $\bot$ then
- Q' = Q' $\cup\{v\}$
- d[v] = l + 1
- parent[v] = u
- (Q,Q') = (Q',$\emptyset$)
- return (d, parent)
-\end{lstlisting}
-```
-## Testing whether a graph is bipartite
-
-**Algorithm**:
-
-- assume the graph is connected or run on each component
-- start BFS with arbitrary vertex, color start red
-- neighbors of a red vertex become blue
-- neighbors of a blue vertex become red
-- bipartite iff there's no color conflict
-
-## Shortest path problems
-
-- **Single Source Shortest Paths**: Shortest path distance of one
- particular vertex $s$ to all other vertices
-- **All Pairs Shortest Paths**: Shortest path distance between all
- pairs of points
-- **Point to Point Shortest Paths**: Shortest path distance between a
- particular start vertex $s$ and a particular target vertex $t$
-
-### Storing paths efficiently
-
-Keep track of the predecessors in the shortest paths with the help of a
-**predecessor matrix** $\Pi=(\pi_{ij})_{i,j=1,...,n}$:
-
-- If $i=j$ or there is no path from $i$ to $j$, set
- $\pi_{ij}=\mathrm{NIL}$
-- Else set $\pi_{ij}$ as the predecessor of $j$ on a shortest path
- from $i$ to $j$
-
-**Space requirement**:
-
-- SSSP: $\O(|V|)$
-- APSP: $\O(|V|^2)$
-
-## Relaxation
-
-- for each vertex, keep an attribute $v.dist$ that is the current
- estimate of the shortest path distance to the source vertex s
-- initially set to $\infty$ for all vertices except start
-- step: figure out whether there is a shorter path from $s$ to $v$ by
- using an edge $(u,v)$ and thus extending the shortest path of $s$ to
- $u$
-
-**Formally**:
-
-```{=tex}
-\begin{lstlisting}
-function Relax(u,v)
- if v.dist > u.dist + w(u, v)
- v.dist = u.dist + w(u,v)
- v.$\pi$ = u
-\end{lstlisting}
-```
-**Also useful**:
-
-```{=tex}
-\begin{lstlisting}
-function InitializeSingleSource(G,s)
- for all $v\in V$
- v.dist = $\infty$ # current distance estimate
- v.$\pi$ = NIL
- s.dist = 0
-\end{lstlisting}
-```
-## Bellman-Ford algorithm
-
-SSSP algorithm for general weighted graphs (including negative edges).
-
-```{=tex}
-\begin{lstlisting}
-function BellmanFord(G,s)
- InitializeSingleSource(G,s)
- for i = 1, ..., |V| - 1
- for all edges $(u,v)\in E$
- Relax(u,v)
- for all edges $(u,v)\in E$
- if v.dist > u.dist + w(u,v)
- return false # cycle detected
- return true
-\end{lstlisting}
-```
-**Running time**: $\O(|V|\cdot|E|)$
-
-::: bem
-Originally designed for directed graphs. Edges need to be relaxed in
-both directions in an undirected graph. Negative weights in an
-undirected graph result in an undefined shortest path.
-:::
-
-## Decentralized Bellman-Ford
-
-**Idea**: "push-based" version of the algorithm: Whenever a value
-`v.dist` changes, the vertex `v` communicates this to its neighbors.
-
-**Synchronous algorithm**:
-
-```{=tex}
-\begin{lstlisting}
-function SynchronousBellmanFord(G,w,s)
- InitializeSingleSource(G,s)
- for i = 1, ..., |V| - 1
- for all $u\in V$
- if u.dist has been updated in previous iteration
- for all edges $(u,v)\in E$
- v.dist = min{v.dist, u.dist + w(u, v)}
- if no v.dist changed
- terminate algorithm
-\end{lstlisting}
-```
-**Asynchronous algorithm** for static graphs with non-negative weights:
-
-```{=tex}
-\begin{lstlisting}
-function AsynchronousBellmanFord(G,w,s)
- InitializeSingleSource(G,s)
- set $s$ as active, other nodes as inactive
- while an active node exists:
- u = active node
- for all edges $(u,v)\in E$
- v.dist = min{v.dist, u.dist + w(u, v)}
- if last operation changed v.dist
- set v active
- set u inactive
-\end{lstlisting}
-```
-## Dijkstra's algorithm
-
-Works on any weighted, (un)directed graph in which all edge weights
-$w(u,v)$ are non-negative.
-
-**Greedy** algorithm: At each point in time it does the "locally best"
-action resulting in the "globally optimal" solution.
-
-### Naive algorithm
-
-**Idea**:
-
-- maintain a set $S$ of vertices for which we already know the
- shortest path distances from $s$
-- look at neighbors $u$ of $S$ and assign a guess for the shortest
- path by using a path through $S$ and adding one edge
-
-```{=tex}
-\begin{lstlisting}
-function Dijkstra(G,s)
- InitializeSingleSource(G,s)
- S = {s}
- while S $\ne$ V
- U = {u $\notin$ S $\mid$ u neighbor of vertex $\in$ S}
- for all u $\in$ U
- for all pre(u) $\in$ S that are predecessors of u
- d'(u, pre(u)) = pre(u).dist + w(pre(u), u)
- d* = min{d'(u,pre(u)) $\mid$ u $\in$ U, pre(U) $\in$ S}
- u* = argmin{d'(u,pre(u)) $\mid$ u $\in$ U, pre(U) $\in$ S}
- u*.dist = d*
- S = S $\cup$ {u*}
-\end{lstlisting}
-```
-**Running time**: $\O(|V|\cdot|E|)$
-
-### Using min-priority queues
-
-**Algorithm**:
-
-```{=tex}
-\begin{lstlisting}
-function Dijkstra(G,w,s)
- InitializeSingleSource(G,s)
- Q = (V, V.dist)
- while Q $\ne\emptyset$
- u = Extract(Q)
- for all v adjacent to u
- Relax(u,v) and update keys in Q
-\end{lstlisting}
-```
-It follows that $Q=V\setminus S$.
-
-**Running time**: $\O((|V|+|E|)\log|V|)$
-
-## All pairs shortest paths
-
-**Naive approach**:
-
-- run Bellman-Ford or Dijkstra with all possible start vertices
-- running time of $\approx\O(|V|^2\cdot|E|)$
-- doesn't reuse already calculated results
-
-**Better**: Floyd-Warshall
-
-## Floyd-Warshall algorithm
-
-**Idea**:
-
-- assume all vertices are numbered from $1$ to $n$.
-- fix two vertices $s$ and $t$
-- consider all paths from $s$ to $t$ that only use vertices $1,...,k$
- as intermediate vertices. Let $\pi_k(s,t)$ be a shortest path *from
- this set* and denotee its length by $d_k(s,t)$
-- recursive relation between $\pi_k$ and $\pi_{k-1}$ to construct the
- solution bottom-up
-
-**Algorithm**:
-
-```{=tex}
-\begin{lstlisting}
-function FloydWarshall(W)
- n = number of vertices
- $D^{(0)}$ = W
- for k = 1,...,n
- let $D^{(k)}$ be a new n $\times$ n matrix
- for s = 1,...,n
- for t = 1,...,n
- $d_k$(s,t) = min{$d_{k-1}$(s,t), $d_{k-1}$(s,k) + $d_{k-1}$(k,t)}
- return $D^{(n)}$
-\end{lstlisting}
-```
-**Running time**: $\O(|V|^3)\implies$ not that much better than naive
-approach but easier to implement
-
-::: bem
-Negative-weight cycles can be detected by looking at the values of the
-diagonal of the distance matrix. If it contains negative entries, the
-graph contains a negative cycle.
-:::
-
-## Point to Point Shortest Paths
-
-Given a graph $G$ and two vertices $s$ and $t$ we want to compute the
-shortest path between $s$ and $t$ only.
-
-**Idea**:
-
-- run `Dijkstra(G,s)` and stop the algorithm when we reached $t$
-- has the same worst case running time as Dijkstra
- - often faster in practice
-
-## Bidirectional Dijkstra
-
-**Idea**:
-
-- instead of starting Dijkstra at $s$ and waitung until we hit $t$, we
- start copies of the Dijkstra algorithm from $s$ as well as $t$
-- alternate between the two algorithms, stop when they meet
-
-**Algorithm**:
-
-- $\mu=\infty$ (best path length currently known)
-- alternately run steps of `Dijkstra(G,s)` and `Dijkstra(G',t)`
- - when an edge $(v,w)$ is scanned by the forward search and $w$
- has already been visited by the backward search:
- - found a path between $s$ and $t$: $s...v\ w...t$
- - length of path is $l=d(s,v)+w(v,w)+d(w,t)$
- - if $\mu>l$, set $\mu=l$
- - analogously for the backward search
-- terminate when the search in one direction selects a vertex $v$ that
- has already been selected in other direction
-- return $\mu$
-
-::: bem
-It is not always true that if the algorithm stops at $v$, that then the
-shortest path between $s$ and $t$ has to go through $v$.
-:::
-
-## Generic labeling method
-
-A convenient generalization of Dijkstra and Bellman-Ford:
-
-- for each vertex, maintain a status variable
- $S(v)\in\{\text{unreached}, \text{labelchanged}, \text{settled}\}$
-- repeatedly relax edges
-- repeat until nothing changes
-
-```{=tex}
-\begin{lstlisting}
-function GenericLabelingMethod(G,s)
- for all v $\in$ V
- v.dist = $\infty$
- v.parent = NIL
- v.status = unreached
- s.dist = 0
- s.status = labelchanged
- while a vertex exists with status labelchanged
- pick such vertex v
- for all neighbors u of v
- Relax(v,u)
- if relaxation changed value u.dist
- u.status = labelchanged
- v.status = settled
-\end{lstlisting}
-```
-## A\* search
-
-**Idea**:
-
-- assume that we know a lower bound $\pi(v)$ on the distance $d(v,t)$
- for all vertices $v$: $$\forall v: \pi(v)\le d(v,t)$$
-- run the *Generic Labeling Method* with start in $s$
-- while Dijkstra selects by $d(s,u)+w(u,v)$, A\* selects by
- $d(s,u)+w(u,v)+\pi(v)$
-
-**Algorithm**:
-
-```{=tex}
-\begin{lstlisting}
-function AstarSearch(G,s,t)
- for all v $\in$ V
- v.dist = $\infty$
- v.status = unreached
- s.dist = 0
- s.status = labelchanged
- while a vertex exists with status labelchanged
- select u = argmin(u.dist + $\pi$(u))
- if u == t
- terminate, found correct distance
- for all neighbors v of u
- Relax(u,v)
- if relaxation changed value v.dist
- v.status = labelchanged
- u.status = settled
-\end{lstlisting}
-```
-**Running time**: If the lower bounds are feasible, A\*-search has the
-same running time as Dijkstra. Can often work fast but in rare cases
-very slow.
-
-## Union-find data structure
-
-TODO.
-
-## Operation O1
-
-TODO.
-
-## Minimal spanning trees
-
-**Idea**:
-
-Given an undirected graph $G=(V,E)$ with real-valued edge values
-$(w_e)_{e\in E}$ find a tree $T=(V',A)$ with $V=V',A\subset E$ that
-minimizes $$\mathrm{weight}(T)=\sum_{e\in A}w_e.$$ Minimal spanning
-trees are not unique and most graphs have many minimal spanning trees.
-
-### Safe edges
-
-Given a subset $A$ of the edges of an MST, a new edge
-$e\in E\setminus A$ is called **safe** with respect to $A$ if there
-exists a MST with edge set $A\cup\{e\}$.
-
-- start with MST $T=(V,E')$
-- take some of its edges $A\subset E'$
-- new edge $e$ is *safe* if $A\cup\{e\}$ can be completed to an MST
- $T'$
-
-### Cut property to find safe edges
-
-A cut $(S,V\setminus S)$ is a partition of the vertex set of a graph in
-two disjoint subsets.
-
-TODO.
-
-### Kruskal's algorithm
-
-**Idea**:
-
-- start with an empty tree
-- repeatedly add the lightest remaining edge that does not produce a
- cycle
-- stop when the resulting tree connects the whole graph
-
-**Naive algorithm** using cut property:
-
-```{=tex}
-\begin{lstlisting}
-function KruskalNaiveMST(V,E,W)
- sort all edges according to their weight
- A = {}
- for all e $\in$ E, in increasing order of weight
- if A $\cup$ {e} does not contain a cycle
- A = A $\cup$ {e}
- if |A| = n - 1
- return A
-\end{lstlisting}
-```
-**Running time**:
-
-- sorting $\O(|E|\log|E|)$
-- check for cycle: $\O(|E|\cdot?)$
-- total: $\O(|E|\log|E|+|E|\cdot?)$
diff --git a/notes/algo/main.pdf b/notes/algo/main.pdf
deleted file mode 100644
index 857e3e3..0000000
--- a/notes/algo/main.pdf
+++ /dev/null
Binary files differ
diff --git a/notes/algo/makefile b/notes/algo/makefile
deleted file mode 100644
index 58570c7..0000000
--- a/notes/algo/makefile
+++ /dev/null
@@ -1,23 +0,0 @@
-VIEW = zathura
-
-all:
- @mkdir -p build/
- @pandoc main.md --filter pandoc-latex-environment --toc -N -V fontsize=11pt -V geometry:a4paper -V geometry:margin=2.5cm -o $(CURDIR)/build/main.tex --pdf-engine-opt=-shell-escape -H header.tex -B title.tex >/dev/null
- @(pdflatex -shell-escape -halt-on-error -output-directory $(CURDIR)/build/ $(CURDIR)/build/main.tex | grep '^!.*' -A200 --color=always ||true) &
- @progress 3 pdflatex
- @cp build/main.pdf . &>/dev/null
- @echo done.
-
-part:
- @mkdir -p build/
- @pandoc part.md --filter pandoc-latex-environment -N -V fontsize=11pt -V geometry:a4paper -V geometry:margin=2.5cm -o $(CURDIR)/build/main.tex --pdf-engine-opt=-shell-escape -H header.tex >/dev/null
- @(pdflatex -shell-escape -halt-on-error -output-directory $(CURDIR)/build/ $(CURDIR)/build/main.tex | grep '^!.*' -A200 --color=always ||true) &
- @progress 1 pdflatex
- @echo done.
-
-clean:
- @$(RM) -rf build
-
-run: all
- @clear
- @$(VIEW) build/main.pdf
diff --git a/notes/algo/title.tex b/notes/algo/title.tex
deleted file mode 100644
index 1b73738..0000000
--- a/notes/algo/title.tex
+++ /dev/null
@@ -1,23 +0,0 @@
-\begin{titlepage}
- \begin{center}
- \vspace*{1cm}
-
- {\huge\textbf{Theoretische Informatik 1\bigskip\\Algorithmen und Datenstrukturen}}
-
- \vspace{0.5cm}
- {\Large Inofficial lecture notes}\\
- \textbf{Marvin Borner}
-
- % \vfill
- % \includegraphics[width=0.4\textwidth]{zeller_logo}\\
- \vfill
-
- Vorlesung gehalten von\\
- \textbf{Ulrike von Luxburg}
-
- \vspace{0.8cm}
-
- \includegraphics[width=0.4\textwidth]{uni_logo}\\
- Wintersemester 2022/23
- \end{center}
-\end{titlepage}