diff options
Diffstat (limited to 'scripts/utils')
-rw-r--r-- | scripts/utils/eval_adept.py | 169 | ||||
-rw-r--r-- | scripts/utils/eval_metrics.py | 51 | ||||
-rw-r--r-- | scripts/utils/eval_utils.py | 92 | ||||
-rw-r--r-- | scripts/utils/io.py | 72 | ||||
-rw-r--r-- | scripts/utils/plot_utils.py | 162 |
5 files changed, 495 insertions, 51 deletions
diff --git a/scripts/utils/eval_adept.py b/scripts/utils/eval_adept.py new file mode 100644 index 0000000..7b8dfa8 --- /dev/null +++ b/scripts/utils/eval_adept.py @@ -0,0 +1,169 @@ +import pandas as pd +import warnings +import os +import argparse + +warnings.simplefilter(action='ignore', category=FutureWarning) +pd.options.mode.chained_assignment = None + +def eval_adept(path): + net = 'net1' + + # read pickle file + tf = pd.DataFrame() + sf = pd.DataFrame() + af = pd.DataFrame() + + with open(os.path.join(path, 'trialframe.csv'), 'rb') as f: + tf_temp = pd.read_csv(f, index_col=0) + tf_temp['net'] = net + tf = pd.concat([tf,tf_temp]) + + with open(os.path.join(path, 'slotframe.csv'), 'rb') as f: + sf_temp = pd.read_csv(f, index_col=0) + sf_temp['net'] = net + sf = pd.concat([sf,sf_temp]) + + with open(os.path.join(path, 'accframe.csv'), 'rb') as f: + af_temp = pd.read_csv(f, index_col=0) + af_temp['net'] = net + af = pd.concat([af,af_temp]) + + # cast variables + sf['visible'] = sf['visible'].astype(bool) + sf['bound'] = sf['bound'].astype(bool) + sf['occluder'] = sf['occluder'].astype(bool) + sf['inimage'] = sf['inimage'].astype(bool) + sf['vanishing'] = sf['vanishing'].astype(bool) + sf['alpha_pos'] = 1-sf['alpha_pos'] + sf['alpha_ges'] = 1-sf['alpha_ges'] + + # scale to percentage + sf['TE'] = sf['TE'] * 100 + + # add surprise as dummy code + tf['control'] = [('control' in set) for set in tf['set']] + sf['control'] = [('control' in set) for set in sf['set']] + + + + # STATS: + tracking_error_visible = 0 + tracking_error_occluded = 0 + num_positive_trackings = 0 + mota = 0 + gate_openings_visible = 0 + gate_openings_occluded = 0 + + + print('Tracking Error ------------------------------') + grouping = (sf.inimage & sf.bound & ~sf.occluder & sf.control) + + def get_stats(col): + return f' M: {col.mean():.3} , STD: {col.std():.3}, Count: {col.count()}' + + # When Visible + temp = sf[grouping & sf.visible] + print(f'Tracking Error when visible:' + get_stats(temp['TE'])) + tracking_error_visible = temp['TE'].mean() + + # When Occluded + temp = sf[grouping & ~sf.visible] + print(f'Tracking Error when occluded:' + get_stats(temp['TE'])) + tracking_error_occluded = temp['TE'].mean() + + + + + + + print('Positive Trackings ------------------------------') + # succesfull trackings: In the last visible moment of the target, the slot was less than 10% away from the target + # determine last visible frame numeric + grouping_factors = ['net','set','evalmode','scene','slot'] + ff = sf[sf.visible & sf.bound & sf.inimage].groupby(grouping_factors).max() + ff.rename(columns = {'frame':'last_visible'}, inplace = True) + sf = sf.merge(ff[['last_visible']], on=grouping_factors, how='left') + + # same for first bound frame + ff = sf[sf.visible & sf.bound & sf.inimage].groupby(grouping_factors).min() + ff.rename(columns = {'frame':'first_visible'}, inplace = True) + sf = sf.merge(ff[['first_visible']], on=grouping_factors, how='left') + + # add dummy variable to sf + sf['last_visible'] = (sf['last_visible'] == sf['frame']) + + # extract the trials where the target was last visible and threshold the TE + ff = sf[sf['last_visible']] + ff['tracked_pos'] = (ff['TE'] < 10) + ff['tracked_neg'] = (ff['TE'] >= 10) + + # fill NaN with 0 + sf = sf.merge(ff[grouping_factors + ['tracked_pos', 'tracked_neg']], on=grouping_factors, how='left') + sf['tracked_pos'].fillna(False, inplace=True) + sf['tracked_neg'].fillna(False, inplace=True) + + # Aggreagte over all scenes + temp = sf[(sf['frame']== 1) & ~sf.occluder & sf.control & (sf.first_visible < 20)] + temp = temp.groupby(['set', 'evalmode']).sum() + temp = temp[['tracked_pos', 'tracked_neg']] + temp = temp.reset_index() + + temp['tracked_pos_pro'] = temp['tracked_pos'] / (temp['tracked_pos'] + temp['tracked_neg']) + temp['tracked_neg_pro'] = temp['tracked_neg'] / (temp['tracked_pos'] + temp['tracked_neg']) + print(temp) + num_positive_trackings = temp['tracked_pos_pro'] + + + + + + print('Mostly Trecked /MOTA ------------------------------') + temp = af[af.index == 'OVERALL'] + temp['mostly_tracked'] = temp['mostly_tracked'] / temp['num_unique_objects'] + temp['partially_tracked'] = temp['partially_tracked'] / temp['num_unique_objects'] + temp['mostly_lost'] = temp['mostly_lost'] / temp['num_unique_objects'] + print(temp) + mota = temp['mota'] + + + print('Openings ------------------------------') + grouping = (sf.inimage & sf.bound & ~sf.occluder & sf.control) + temp = sf[grouping & sf.visible] + print(f'Percept gate openings when visible:' + get_stats(temp['alpha_pos'] + temp['alpha_ges'])) + gate_openings_visible = temp['alpha_pos'].mean() + temp['alpha_ges'].mean() + + temp = sf[grouping & ~sf.visible] + print(f'Percept gate openings when occluded:' + get_stats(temp['alpha_pos'] + temp['alpha_ges'])) + gate_openings_occluded = temp['alpha_pos'].mean() + temp['alpha_ges'].mean() + + + print('------------------------------------------------') + print('------------------------------------------------') + str = '' + str += f'net: {net}\n' + str += f'Tracking Error when visible: {tracking_error_visible:.3}\n' + str += f'Tracking Error when occluded: {tracking_error_occluded:.3}\n' + str += 'Positive Trackings: ' + ', '.join(f'{val:.3}' for val in num_positive_trackings) + '\n' + str += 'MOTA: ' + ', '.join(f'{val:.3}' for val in mota) + '\n' + str += f'Percept gate openings when visible: {gate_openings_visible:.3}\n' + str += f'Percept gate openings when occluded: {gate_openings_occluded:.3}\n' + + print(str) + + # write tstring to file + with open(os.path.join(path, 'results.txt'), 'w') as f: + f.write(str) + + + +if __name__ == "__main__": + + # use argparse to get the path to the results folder + parser = argparse.ArgumentParser() + parser.add_argument('--path', type=str, default='') + args = parser.parse_args() + + # setting path to results folder + path = args.path + eval_adept(path)
\ No newline at end of file diff --git a/scripts/utils/eval_metrics.py b/scripts/utils/eval_metrics.py index 6f5106d..98af468 100644 --- a/scripts/utils/eval_metrics.py +++ b/scripts/utils/eval_metrics.py @@ -3,6 +3,8 @@ vp_utils.py SCRIPT TAKEN FROM https://github.com/pairlab/SlotFormer ''' +import cv2 +from einops import rearrange import numpy as np from scipy.optimize import linear_sum_assignment from skimage.metrics import structural_similarity, peak_signal_noise_ratio @@ -11,7 +13,7 @@ import torch import torch.nn.functional as F import torchvision.ops as vops -FG_THRE = 0.5 +FG_THRE = 0.3 # 0.5 for the rest, 0.3 for bouncingballs PALETTE = [(0, 255, 0), (0, 0, 255), (0, 255, 255), (255, 255, 0), (255, 0, 255), (100, 100, 255), (200, 200, 100), (170, 120, 200), (255, 0, 0), (200, 100, 100), (10, 200, 100), (200, 200, 200), @@ -272,6 +274,8 @@ def pred_eval_step( gt_bbox=None, pred_bbox=None, eval_traj=True, + gt_mask_hidden=None, + pred_mask_hidden=None, ): """Both of shape [B, T, C, H, W], torch.Tensor. masks of shape [B, T, H, W]. @@ -288,13 +292,14 @@ def pred_eval_step( if eval_traj: assert len(gt_mask.shape) == len(pred_mask.shape) == 4 assert gt_mask.shape == pred_mask.shape - if eval_traj: + if eval_traj and gt_bbox is not None: assert len(gt_pres_mask.shape) == 3 assert len(gt_bbox.shape) == len(pred_bbox.shape) == 4 T = gt.shape[1] # compute perceptual dist & mask metrics before converting to numpy all_percept_dist, all_ari, all_fari, all_miou = [], [], [], [] + all_ari_hidden, all_fari_hidden, all_miou_hidden = [], [], [] for t in range(T): one_gt, one_pred = gt[:, t], pred[:, t] percept_dist = perceptual_dist(one_gt, one_pred, lpips_fn).item() @@ -307,6 +312,29 @@ def pred_eval_step( all_ari.append(ari) all_fari.append(fari) all_miou.append(miou) + + # hidden: + if gt_mask_hidden is not None: + one_gt_mask, one_pred_mask = gt_mask_hidden[:, t], pred_mask_hidden[:, t] + ari = ARI_metric(one_gt_mask, one_pred_mask) + fari = fARI_metric(one_gt_mask, one_pred_mask) + miou = miou_metric(one_gt_mask, one_pred_mask) + all_ari_hidden.append(ari) + all_fari_hidden.append(fari) + all_miou_hidden.append(miou) + + + # dispalay masks with cv2 + if False: + one_gt_mask_, one_pred_mask_ = one_gt_mask.clone(), one_pred_mask.clone() + + # concat one_gt_mask and one_pred_mask horizontally + frame = np.concatenate((one_gt_mask_, one_pred_mask_), axis=1) + frame = rearrange(frame, 'c h w -> h w c') * (255/6) + frame = frame.astype(np.uint8) + cv2.imshow('frame', frame) + cv2.waitKey(0) + else: all_ari.append(0.) all_fari.append(0.) @@ -315,14 +343,14 @@ def pred_eval_step( # compute bbox metrics all_ap, all_ar = [], [] for t in range(T): - if not eval_traj: + if not eval_traj or gt_bbox is None: all_ap.append(0.) all_ar.append(0.) continue one_gt_pres_mask, one_gt_bbox, one_pred_bbox = \ gt_pres_mask[:, t], gt_bbox[:, t], pred_bbox[:, t] ap, ar = batch_bbox_precision_recall(one_gt_pres_mask, one_gt_bbox, - one_pred_bbox) + one_pred_bbox) all_ap.append(ap) all_ar.append(ar) @@ -333,11 +361,13 @@ def pred_eval_step( one_gt, one_pred = gt[:, t], pred[:, t] mse = mse_metric(one_gt, one_pred) psnr = psnr_metric(one_gt, one_pred) - ssim = ssim_metric(one_gt, one_pred) + #ssim = ssim_metric(one_gt, one_pred) + ssim = 0 all_mse.append(mse) all_ssim.append(ssim) all_psnr.append(psnr) - return { + + res = { 'mse': all_mse, 'ssim': all_ssim, 'psnr': all_psnr, @@ -346,5 +376,12 @@ def pred_eval_step( 'fari': all_fari, 'miou': all_miou, 'ap': all_ap, - 'ar': all_ar, + 'ar': all_ar } + + if gt_mask_hidden is not None: + res['ari_hidden'] = all_ari_hidden + res['fari_hidden'] = all_fari_hidden + res['miou_hidden'] = all_miou_hidden + + return res diff --git a/scripts/utils/eval_utils.py b/scripts/utils/eval_utils.py index faab7ec..a01ffd0 100644 --- a/scripts/utils/eval_utils.py +++ b/scripts/utils/eval_utils.py @@ -1,18 +1,92 @@ import os +import shutil +from einops import rearrange import torch as th from model.loci import Loci +def masks_to_boxes(masks: th.Tensor) -> th.Tensor: + """ + Compute the bounding boxes around the provided masks. + + Returns a [N, 4] tensor containing bounding boxes. The boxes are in ``(x1, y1, x2, y2)`` format with + ``0 <= x1 < x2`` and ``0 <= y1 < y2``. + + Args: + masks (Tensor[N, H, W]): masks to transform where N is the number of masks + and (H, W) are the spatial dimensions. + + Returns: + Tensor[N, 4]: bounding boxes + """ + if masks.numel() == 0: + return th.zeros((0, 4), device=masks.device, dtype=th.float) + + n = masks.shape[0] + + bounding_boxes = th.zeros((n, 4), device=masks.device, dtype=th.float) + + for index, mask in enumerate(masks): + if mask.sum() > 0: + y, x = th.where(mask != 0) + + bounding_boxes[index, 0] = th.min(x) + bounding_boxes[index, 1] = th.min(y) + bounding_boxes[index, 2] = th.max(x) + bounding_boxes[index, 3] = th.max(y) + + return bounding_boxes + +def boxes_to_centroids(boxes): + """Post-process masks instead of directly taking argmax. + + Args: + bboxes: [B, T, N, 4], 4: [x1, y1, x2, y2] + + Returns: + centroids: [B, T, N, 2], 2: [x, y] + """ + + centroids = (boxes[:, :, :, :2] + boxes[:, :, :, 2:]) / 2 + centroids = centroids.squeeze(0) + + # scale to [-1, 1] + centroids[:, :, 0] = centroids[:, :, 0] / 64 * 2 - 1 + centroids[:, :, 1] = centroids[:, :, 1] / 64 * 2 - 1 + + return centroids + +def compute_position_from_mask(mask): + """ + Compute the position of the object from the mask. + + Args: + mask (Tensor[B, N, H, W]): masks to transform where N is the number of masks + and (H, W) are the spatial dimensions. + + Returns: + Tensor[B, N, 2]: position of the object + + """ + masks_binary = (mask > 0.8).float()[:, :-1] + b, o, h, w = masks_binary.shape + masks2 = rearrange(masks_binary, 'b o h w -> (b o) h w') + boxes = masks_to_boxes(masks2.long()) + boxes = rearrange(boxes, '(b o) c -> b 1 o c', b=b, o=o) + centroids = boxes_to_centroids(boxes) + centroids = centroids[:, :, :, [1, 0]].squeeze(1) + return centroids + def setup_result_folders(file, name, set_test, evaluation_mode, object_view, individual_views): net_name = file.split('/')[-1].split('.')[0] #root_path = file.split('nets')[0] - root_path = os.path.join(*file.split('/')[0:-1]) + root_path = os.path.join(*file.split('/')[0:-2]) root_path = os.path.join(root_path, f'results{name}', net_name, set_test['type']) plot_path = os.path.join(root_path, evaluation_mode) # create directories - #if os.path.exists(plot_path): - # shutil.rmtree(plot_path) + if os.path.exists(plot_path): + shutil.rmtree(plot_path) os.makedirs(plot_path, exist_ok = True) if object_view: os.makedirs(os.path.join(plot_path, 'object'), exist_ok = True) @@ -59,13 +133,21 @@ def load_model(cfg, cfg_net, file, device): print(f"load {file} to device {device}") state = th.load(file, map_location=device) - # backward compatibility + # 1. Get keys of current model while ensuring backward compatibility model = {} + allowed_keys = [] + rand_state = net.state_dict() + for key, value in rand_state.items(): + allowed_keys.append(key) + + # 2. Overwrite with values from file for key, value in state["model"].items(): # replace update_module with percept_gate_controller in key string: key = key.replace("update_module", "percept_gate_controller") - model[key.replace(".module.", ".")] = value + if key in allowed_keys: + model[key.replace(".module.", ".")] = value + net.load_state_dict(model) # ??? diff --git a/scripts/utils/io.py b/scripts/utils/io.py index 9bd8158..787c575 100644 --- a/scripts/utils/io.py +++ b/scripts/utils/io.py @@ -65,7 +65,7 @@ def model_path(cfg: Configuration, overwrite=False, move_old=True): :param move_old: Moves old folder with the same name to an old folder, if not overwrite :return: Model path """ - _path = os.path.join('out') + _path = os.path.join('out', cfg.dataset) path = os.path.join(_path, cfg.model_path) if not os.path.exists(_path): @@ -95,14 +95,15 @@ def model_path(cfg: Configuration, overwrite=False, move_old=True): class LossLogger: - def __init__(self): + def __init__(self, writer): self.avgloss = UEMA() self.avg_position_loss = UEMA() self.avg_time_loss = UEMA() - self.avg_encoder_loss = UEMA() - self.avg_mse_object_loss = UEMA() - self.avg_long_mse_object_loss = UEMA(33333) + self.avg_latent_loss = UEMA() + self.avg_encoding_loss = UEMA() + self.avg_prediction_loss = UEMA() + self.avg_prediction_loss_long = UEMA(33333) self.avg_num_objects = UEMA() self.avg_openings = UEMA() self.avg_gestalt = UEMA() @@ -110,28 +111,73 @@ class LossLogger: self.avg_gestalt_mean = UEMA() self.avg_update_gestalt = UEMA() self.avg_update_position = UEMA() + self.avg_num_bounded = UEMA() + + self.writer = writer - def update_complete(self, avg_position_loss, avg_time_loss, avg_encoder_loss, avg_mse_object_loss, avg_long_mse_object_loss, avg_num_objects, avg_openings, avg_gestalt, avg_gestalt2, avg_gestalt_mean, avg_update_gestalt, avg_update_position): + def update_complete(self, avg_position_loss, avg_time_loss, avg_latent_loss, avg_encoding_loss, avg_prediction_loss, avg_num_objects, avg_openings, avg_gestalt, avg_gestalt2, avg_gestalt_mean, avg_update_gestalt, avg_update_position, avg_num_bounded, lr, num_updates): self.avg_position_loss.update(avg_position_loss.item()) self.avg_time_loss.update(avg_time_loss.item()) - self.avg_encoder_loss.update(avg_encoder_loss.item()) - self.avg_mse_object_loss.update(avg_mse_object_loss.item()) - self.avg_long_mse_object_loss.update(avg_long_mse_object_loss.item()) + self.avg_latent_loss.update(avg_latent_loss.item()) + self.avg_encoding_loss.update(avg_encoding_loss.item()) + self.avg_prediction_loss.update(avg_prediction_loss.item()) + self.avg_prediction_loss_long.update(avg_prediction_loss.item()) self.avg_num_objects.update(avg_num_objects) self.avg_openings.update(avg_openings) self.avg_gestalt.update(avg_gestalt.item()) self.avg_gestalt2.update(avg_gestalt2.item()) self.avg_gestalt_mean.update(avg_gestalt_mean.item()) - self.avg_update_gestalt.update(avg_update_gestalt.item()) - self.avg_update_position.update(avg_update_position.item()) + self.avg_update_gestalt.update(avg_update_gestalt) + self.avg_update_position.update(avg_update_position) + self.avg_num_bounded.update(avg_num_bounded) + + self.writer.add_scalar("Train/Position Loss", avg_position_loss.item(), num_updates) + self.writer.add_scalar("Train/Time Loss", avg_time_loss.item(), num_updates) + self.writer.add_scalar("Train/Latent Loss", avg_latent_loss.item(), num_updates) + self.writer.add_scalar("Train/Encoder Loss", avg_encoding_loss.item(), num_updates) + self.writer.add_scalar("Train/Prediction Loss", avg_prediction_loss.item(), num_updates) + self.writer.add_scalar("Train/Number of Objects", avg_num_objects, num_updates) + self.writer.add_scalar("Train/Openings", avg_openings, num_updates) + self.writer.add_scalar("Train/Gestalt", avg_gestalt.item(), num_updates) + self.writer.add_scalar("Train/Gestalt2", avg_gestalt2.item(), num_updates) + self.writer.add_scalar("Train/Gestalt Mean", avg_gestalt_mean.item(), num_updates) + self.writer.add_scalar("Train/Update Gestalt", avg_update_gestalt, num_updates) + self.writer.add_scalar("Train/Update Position", avg_update_position, num_updates) + self.writer.add_scalar("Train/Number Bounded", avg_num_bounded, num_updates) + self.writer.add_scalar("Train/Learning Rate", lr, num_updates) + pass - def update_average_loss(self, avgloss): + def update_average_loss(self, avgloss, num_updates): self.avgloss.update(avgloss) + self.writer.add_scalar("Train/Loss", avgloss, num_updates) pass def get_log(self): - info = f'Loss: {np.abs(float(self.avgloss)):.2e}|{float(self.avg_mse_object_loss):.2e}|{float(self.avg_long_mse_object_loss):.2e}, reg: {float(self.avg_encoder_loss):.2e}|{float(self.avg_time_loss):.2e}|{float(self.avg_position_loss):.2e}, obj: {float(self.avg_num_objects):.1f}, open: {float(self.avg_openings):.2e}|{float(self.avg_gestalt):.2f}, bin: {float(self.avg_gestalt_mean):.2e}|{np.sqrt(float(self.avg_gestalt2) - float(self.avg_gestalt)**2):.2e} closed: {float(self.avg_update_gestalt):.2e}|{float(self.avg_update_position):.2e}' + info = f'Loss: {np.abs(float(self.avgloss)):.2e}|{float(self.avg_prediction_loss):.2e}|{float(self.avg_prediction_loss_long):.2e}, reg: {float(self.avg_encoding_loss):.2e}|{float(self.avg_time_loss):.2e}|{float(self.avg_latent_loss):.2e}|{float(self.avg_position_loss):.2e}, obj: {float(self.avg_num_objects):.1f}, open: {float(self.avg_openings):.2e}|{float(self.avg_gestalt):.2f}, bin: {float(self.avg_gestalt_mean):.2e}|{np.sqrt(float(self.avg_gestalt2) - float(self.avg_gestalt)**2):.2e} closed: {float(self.avg_update_gestalt):.2e}|{float(self.avg_update_position):.2e}' return info + +class WriterWrapper(): + + def __init__(self, use_wandb: bool, cfg: Configuration): + if use_wandb: + from torch.utils.tensorboard import SummaryWriter + import wandb + wandb.init(project=f'Loci_Looped_{cfg.dataset}', name= cfg.model_path, sync_tensorboard=True, config=cfg) + self.writer = SummaryWriter() + else: + self.writer = None + + def add_scalar(self, name, value, step): + if self.writer is not None: + self.writer.add_scalar(name, value, step) + + def add_video(self, name, value, step): + if self.writer is not None: + self.writer.add_video(name, value, step) + + def flush(self): + if self.writer is not None: + self.writer.flush() diff --git a/scripts/utils/plot_utils.py b/scripts/utils/plot_utils.py index 5cb20de..1c83456 100644 --- a/scripts/utils/plot_utils.py +++ b/scripts/utils/plot_utils.py @@ -151,9 +151,10 @@ def to_rgb(tensor: th.Tensor): tensor ), dim=1) -def visualise_gate(gate, h, w): +def visualise_gate(gate, h, w, invert = False): bar = th.ones((1,h,w), device=gate.device) * 0.9 black = int(w*gate.item()) + black = w-black if invert else black if black > 0: bar[:,:, -black:] = 0 return bar @@ -266,28 +267,30 @@ def plot_online_error(error, error_name, target, t, i, sequence_len, root_path, return error_plot -def plot_object_view(error_plot, error_plot2, error_plot_slots, error_plot_slots2, highlighted_input, output_hidden, object_next, rawmask_next, velocity_next2d, target, slots_closed, gt_positions_target_next, association_table, size, num_objects, largest_object): +def plot_object_view(error_plot, error_plot2, error_plot_slots, error_plot_slots2, highlighted_input, output_hidden, object_next, rawmask_next, velocity_next2d, target, slots_closed, gt_positions_target_next, association_table, size, num_objects, largest_object, rollout_mode=False, openings=None): # add ground truth positions of objects to image + target = target.clone() if gt_positions_target_next is not None: for o in range(gt_positions_target_next.shape[1]): position = gt_positions_target_next[0, o] position = position/2 + 0.5 - if position[2] > 0.0 and position[0] > 0.0 and position[0] < 1.0 and position[1] > 0.0 and position[1] < 1.0: - width = 5 - w = np.clip(int(position[0]*target.shape[2]), width, target.shape[2]-width).item() + if (len(position.shape) < 3 or position[2] > 0.0) and position[0] > 0.0 and position[0] < 1.0 and position[1] > 0.0 and position[1] < 1.0: + width = int(target.shape[2]*0.05) + w = np.clip(int(position[0]*target.shape[2]), width, target.shape[2]-width).item() # made for bouncing balls h = np.clip(int(position[1]*target.shape[3]), width, target.shape[3]-width).item() col = get_color(o).view(3,1,1) target[0,:,(w-width):(w+width), (h-width):(h+width)] = col # add these positions to the associated slots velocity_next2d ilustration - slots = (association_table[0] == o).nonzero() - for s in slots.flatten(): - velocity_next2d[s,:,(w-width):(w+width), (h-width):(h+width)] = col + if association_table is not None: + slots = (association_table[0] == o).nonzero() + for s in slots.flatten(): + velocity_next2d[s,:,(w-width):(w+width), (h-width):(h+width)] = col - if output_hidden is not None and s != largest_object: - output_hidden[0,:,(w-width):(w+width), (h-width):(h+width)] = col + if output_hidden is not None and s != largest_object: + output_hidden[0,:,(w-width):(w+width), (h-width):(h+width)] = col gateheight = 60 ch = 40 @@ -296,22 +299,28 @@ def plot_object_view(error_plot, error_plot2, error_plot_slots, error_plot_slots gh_margin = int((gh-gh_bar)/2) margin = 20 slots_margin = 10 - height = size[0] * 6 + 18*5 + height = size[0] * 6 + 18*6 width = size[1] * 4 + 18*2 + size[1]*num_objects + 6*(num_objects+1) + slots_margin*(num_objects+1) img = th.ones((3, height, width), device = object_next.device) * 0.4 row = (lambda row_index: [2*size[0]*row_index + (row_index+1)*margin, 2*size[0]*(row_index+1) + (row_index+1)*margin]) col1 = range(margin, margin + size[1]*2) col2 = range(width-(margin+size[1]*2), width-margin) + # add frame around image + if rollout_mode: + img[0,margin-2:margin+size[0]*2+2, margin-2:margin+size[1]*2+2] = 1 + img[:,row(0)[0]:row(0)[1], col1] = preprocess(highlighted_input.to(object_next.device), 2)[0] img[:,row(1)[0]:row(1)[1], col1] = preprocess(output_hidden.to(object_next.device), 2)[0] img[:,row(2)[0]:row(2)[1], col1] = preprocess(target.to(object_next.device), 2)[0] + # add large error plots to image if error_plot is not None: img[:,row(0)[0]+gh+ch+2*margin-gh_margin:row(0)[1]+gh+ch+2*margin-gh_margin, col2] = preprocess(error_plot.to(object_next.device), normalize= True) if error_plot2 is not None: img[:,row(2)[0]:row(2)[1], col2] = preprocess(error_plot2.to(object_next.device), normalize= True) + # fill colunmns with slots for o in range(num_objects): col = 18+size[1]*2+6+o*(6+size[1])+(o+1)*slots_margin @@ -321,23 +330,35 @@ def plot_object_view(error_plot, error_plot2, error_plot_slots, error_plot_slots if (error_plot_slots2 is not None) and len(error_plot_slots2) > o: img[:,margin:margin+ch, col] = get_color(o).view(3,1,1).to(object_next.device) + # gestalt gate img[:,margin+ch+2*margin:2*margin+gh_bar+ch+margin, col] = visualise_gate(slots_closed[:,o, 0].to(object_next.device), h=gh_bar, w=len(col)) offset = gh+margin-gh_margin+ch+2*margin row = (lambda row_index: [offset+(size[0]+6)*row_index, offset+size[0]*(row_index+1)+6*row_index]) img[:,row(0)[0]:row(0)[1], col] = preprocess(rawmask_next[0,o].to(object_next.device)) img[:,row(1)[0]:row(1)[1], col] = preprocess(object_next[:,o].to(object_next.device)) + + # small error plots top row if (error_plot_slots2 is not None) and len(error_plot_slots2) > o: img[:,row(2)[0]:row(2)[1], col] = preprocess(error_plot_slots2[o].to(object_next.device), normalize=True) + # switch to bottom row offset = margin*2-8 row = (lambda row_index: [offset+(size[0]+6)*row_index, offset+size[0]*(row_index+1)+6*row_index]) + + # position gate img[:,row(4)[0]-gh+gh_margin:row(4)[0]-gh_margin, col] = visualise_gate(slots_closed[:,o, 1].to(object_next.device), h=gh_bar, w=len(col)) img[:,row(4)[0]:row(4)[1], col] = preprocess(velocity_next2d[o].to(object_next.device), normalize=True)[0] + + # small error plots bottom row if (error_plot_slots is not None) and len(error_plot_slots) > o: img[:,row(5)[0]:row(5)[1], col] = preprocess(error_plot_slots[o].to(object_next.device), normalize=True) - img = rearrange(img * 255, 'c h w -> h w c').cpu().numpy() + # add gatelord gate visualisation to image + if openings is not None: + img[:,row(5)[1]+gh_margin:row(5)[1]+gh-gh_margin, col] = visualise_gate(openings[:,o].to(object_next.device), h=gh_bar, w=len(col), invert = True) + + img = rearrange(img * 255, 'c h w -> h w c').cpu() return img @@ -347,8 +368,57 @@ def write_image(file, img): pass -def plot_timestep(cfg, cfg_net, input, target, mask_cur, mask_next, output_next, position_encoder_cur, position_next, rawmask_hidden, rawmask_cur, rawmask_next, largest_object, object_cur, object_next, object_hidden, slots_bounded, slots_partially_occluded_cur, slots_occluded_cur, slots_partially_occluded_next, slots_occluded_next, slots_closed, gt_positions_target_next, association_table, error_next, output_hidden, object_view, individual_views, statistics_complete_slots, statistics_batch, sequence_len, root_path, plot_path, t_index, t, i): - +def extract_element(tensor, index): + if tensor is None: + return None + return tensor[index:index+1] + +def plot_timestep(cfg, cfg_net, input, target, mask_cur, mask_next, output_next, position_encoder_cur, position_next, rawmask_hidden, rawmask_cur, rawmask_next, largest_object, object_cur, object_next, object_hidden, slots_bounded, slots_partially_occluded_cur, slots_occluded_cur, slots_partially_occluded_next, slots_occluded_next, slots_closed, gt_positions_target_next, association_table, error_next, output_hidden, object_view, individual_views, statistics_complete_slots, statistics_batch, sequence_len, root_path, plot_path, t_index, t, sample_i, rollout_mode=False, num_vid=2, att=None, openings=None): + + if len(input) > 1: + img_list = None + for i in range(min(len(input), num_vid)): + _input = extract_element(input, i) + _target = extract_element(target, i) + _mask_cur = extract_element(mask_cur, i) + _mask_next = extract_element(mask_next, i) + _output_next = extract_element(output_next, i) + _position_encoder_cur = extract_element(position_encoder_cur, i) + _position_next = extract_element(position_next, i) + _rawmask_hidden = extract_element(rawmask_hidden, i) + _rawmask_cur = extract_element(rawmask_cur, i) + _rawmask_next = extract_element(rawmask_next, i) + _largest_object = extract_element(largest_object, i) + _object_cur = extract_element(object_cur, i) + _object_next = extract_element(object_next, i) + _object_hidden = extract_element(object_hidden, i) + _slots_bounded = extract_element(slots_bounded, i) + _slots_partially_occluded_cur = extract_element(slots_partially_occluded_cur, i) + _slots_occluded_cur = extract_element(slots_occluded_cur, i) + _slots_partially_occluded_next = extract_element(slots_partially_occluded_next, i) + _slots_occluded_next = extract_element(slots_occluded_next, i) + _slots_closed = extract_element(slots_closed, i) + _gt_positions_target_next = extract_element(gt_positions_target_next, i) + _association_table = extract_element(association_table, i) + _error_next = extract_element(error_next, i) + _output_hidden = extract_element(output_hidden, i) + _att = extract_element(att, i) + _openings = extract_element(openings, i) + + img = plot_timestep_single(cfg, cfg_net, _input, _target, _mask_cur, _mask_next, _output_next, _position_encoder_cur, _position_next, _rawmask_hidden, _rawmask_cur, _rawmask_next, _largest_object, _object_cur, _object_next, _object_hidden, _slots_bounded, _slots_partially_occluded_cur, _slots_occluded_cur, _slots_partially_occluded_next, _slots_occluded_next, _slots_closed, _gt_positions_target_next, _association_table, _error_next, _output_hidden, object_view, individual_views, statistics_complete_slots, statistics_batch, sequence_len, root_path, plot_path, t_index, t, i, rollout_mode, att=_att, openings=_openings) + if img_list is None: + img_list = img.unsqueeze(0) + else: + img_list = th.cat((img_list, img.unsqueeze(0)), dim=0) + + return img_list.permute(0, 3, 1, 2) + + else: + img = plot_timestep_single(cfg, cfg_net, input, target, mask_cur, mask_next, output_next, position_encoder_cur, position_next, rawmask_hidden, rawmask_cur, rawmask_next, largest_object, object_cur, object_next, object_hidden, slots_bounded, slots_partially_occluded_cur, slots_occluded_cur, slots_partially_occluded_next, slots_occluded_next, slots_closed, gt_positions_target_next, association_table, error_next, output_hidden, object_view, individual_views, statistics_complete_slots, statistics_batch, sequence_len, root_path, plot_path, t_index, t, sample_i, rollout_mode, att=att, openings=openings) + return img + +def plot_timestep_single(cfg, cfg_net, input, target, mask_cur, mask_next, output_next, position_encoder_cur, position_next, rawmask_hidden, rawmask_cur, rawmask_next, largest_object, object_cur, object_next, object_hidden, slots_bounded, slots_partially_occluded_cur, slots_occluded_cur, slots_partially_occluded_next, slots_occluded_next, slots_closed, gt_positions_target_next, association_table, error_next, output_hidden, object_view, individual_views, statistics_complete_slots, statistics_batch, sequence_len, root_path, plot_path, t_index, t, i, rollout_mode=False, att=None, openings=None): + # Create eposition helpers size, gaus2d, vector2d, scale = get_position_helper(cfg_net, mask_cur.device) @@ -364,7 +434,7 @@ def plot_timestep(cfg, cfg_net, input, target, mask_cur, mask_next, output_next, velocity_next2d = color_slots(velocity_next2d, slots_bounded, slots_partially_occluded_next, slots_occluded_next) # compute occlusion - if (cfg.datatype == "adept"): + if (cfg.datatype == "adept") and rawmask_hidden is not None: rawmask_cur_l, rawmask_next_l = compute_occlusion_mask(rawmask_cur, rawmask_next, mask_cur, mask_next, scale) rawmask_cur_h, rawmask_next_h = compute_occlusion_mask(rawmask_cur, rawmask_hidden, mask_cur, mask_next, scale) rawmask_cur_h[:,largest_object] = rawmask_cur_l[:,largest_object] @@ -385,30 +455,39 @@ def plot_timestep(cfg, cfg_net, input, target, mask_cur, mask_next, output_next, mask_next = rearrange(mask_next, 'b (o 1) h w -> b o 1 h w') if object_view: - if (cfg.datatype == "adept"): + if (cfg.datatype == "adept") and statistics_complete_slots is not None: num_objects = 4 error_plot_slots = plot_online_error_slots(statistics_complete_slots['TE'][-cfg_net.num_objects*(t+1):], 'Tracking error', target, sequence_len, root_path, statistics_complete_slots['visible'][-cfg_net.num_objects*(t+1):], slots_bounded) - error_plot_slots2 = plot_online_error_slots(statistics_complete_slots['slot_error'][-cfg_net.num_objects*(t+1):], 'Image error', target, sequence_len, root_path, statistics_complete_slots['visible'][-cfg_net.num_objects*(t+1):], slots_bounded, ylim=0.0001) + #error_plot_slots2 = plot_online_error_slots(statistics_complete_slots['slot_error'][-cfg_net.num_objects*(t+1):], 'Image error', target, sequence_len, root_path, statistics_complete_slots['visible'][-cfg_net.num_objects*(t+1):], slots_bounded, ylim=0.0001) error_plot = plot_online_error(statistics_batch['image_error'], 'Prediction error', target, t, i, sequence_len, root_path) error_plot2 = plot_online_error(statistics_batch['TE'], 'Tracking error', target, t, i, sequence_len, root_path) - img = plot_object_view(error_plot, error_plot2, error_plot_slots, error_plot_slots2, highlighted_input, output_hidden, object_next, rawmask_next, velocity_next2d, target, slots_closed, gt_positions_target_next, association_table, size, num_objects, largest_object) - else: + att_histogram = plot_attention_histogram(att, target, root_path) + img = plot_object_view(error_plot, error_plot2, error_plot_slots, att_histogram, highlighted_input, output_hidden, object_next, rawmask_next, velocity_next2d, target, slots_closed, gt_positions_target_next, association_table, size, num_objects, largest_object, openings=openings) + elif (cfg.datatype == "clevrer") and statistics_complete_slots is not None: num_objects = cfg_net.num_objects error_plot_slots2 = plot_online_error_slots(statistics_complete_slots['slot_error'][-cfg_net.num_objects*(t+1):], 'Image error', target, sequence_len, root_path, statistics_complete_slots['slot_error'][-cfg_net.num_objects*(t+1):], slots_bounded, ylim=0.0001) error_plot = plot_online_error(statistics_batch['image_error_mse'], 'Prediction error', target, t, i, sequence_len, root_path) - img = plot_object_view(error_plot, None, None, error_plot_slots2, highlighted_input, output_next, object_next, rawmask_next, velocity_next2d, target, slots_closed, None, None, size, num_objects, largest_object) - - cv2.imwrite(f'{plot_path}object/gpnet-objects-{i:04d}-{t_index:03d}.jpg', img) + img = plot_object_view(error_plot, None, None, error_plot_slots2, highlighted_input, output_next, object_next, rawmask_next, velocity_next2d, target, slots_closed, gt_positions_target_next, association_table, size, num_objects, largest_object, openings=openings) + else: + num_objects = cfg_net.num_objects + att_histogram = plot_attention_histogram(att, target, root_path) + img = plot_object_view(None, None, att_histogram, None, input, output, object_next, rawmask_next, velocity_next2d, target, slots_closed, gt_positions_target_next, association_table, size, num_objects, largest_object, rollout_mode=rollout_mode, openings=openings) + + if plot_path is not None: + cv2.imwrite(f'{plot_path}/object/{i:04d}-{t_index:03d}.jpg', img.numpy()) if individual_views: # ['error', 'input', 'background', 'prediction', 'position', 'rawmask', 'mask', 'othermask']: write_image(f'{plot_path}/individual/error/error-{i:04d}-{t_index:03d}.jpg', error_next[0]) - write_image(f'{plot_path}/individual/input/input-{i:04d}-{t_index:03d}.jpg', input[0]) + write_image(f'{plot_path}/individual/input/input-{i:04d}-{t_index:03d}.jpg', target[0]) write_image(f'{plot_path}/individual/background/background-{i:04d}-{t_index:03d}.jpg', mask_next[0,-1]) - write_image(f'{plot_path}/individual/imagination/imagination-{i:04d}-{t_index:03d}.jpg', output_hidden[0]) + #write_image(f'{plot_path}/individual/imagination/imagination-{i:04d}-{t_index:03d}.jpg', output_hidden[0]) write_image(f'{plot_path}/individual/prediction/prediction-{i:04d}-{t_index:03d}.jpg', output_next[0]) + for o in range(len(rawmask_next[0])): + write_image(f'{plot_path}/individual/rgb/object-{i:04d}-{o}-{t_index:03d}.jpg', object_next[0][o]) + write_image(f'{plot_path}/individual/rawmask/rawmask-{i:04d}-{o}-{t_index:03d}.jpg', rawmask_next[0][o]) - pass + return img def get_position_helper(cfg_net, device): size = cfg_net.input_size @@ -425,4 +504,35 @@ def reshape_slots(slots_bounded, slots_partially_occluded_cur, slots_occluded_cu slots_partially_occluded_next = th.squeeze(slots_partially_occluded_next)[..., None,None,None] slots_occluded_next = th.squeeze(slots_occluded_next)[..., None,None,None] - return slots_bounded, slots_partially_occluded_cur, slots_occluded_cur, slots_partially_occluded_next, slots_occluded_next
\ No newline at end of file + return slots_bounded, slots_partially_occluded_cur, slots_occluded_cur, slots_partially_occluded_next, slots_occluded_next + +def plot_attention_histogram(att, target, root_path): + att_plots = [] + if (att is not None) and (len(att) > 0): + att = att[0] + for object_attention in att: + + fig, ax = plt.subplots(figsize=(round(target.shape[3]/100,2), round(target.shape[2]/100,2))) + + # Plot a bar plot over the 6 objects + num_objects = len(object_attention) + ax.bar(range(num_objects), object_attention.cpu()) + ax.set_ylim([0,1]) + ax.set_xlim([-1,num_objects]) + ax.set_xticks(range(num_objects)) + #ax.set_xticklabels(['1','2','3','4','5','6']) + ax.set_ylabel('attention') + ax.set_xlabel('object') + ax.set_title('Attention histogram') + + # fixed + fig.tight_layout() + plt.savefig(f'{root_path}/tmp.jpg') + plot = PIL.Image.frombytes('RGB', fig.canvas.get_width_height(),fig.canvas.tostring_rgb()) + plot = th.from_numpy(np.array(plot).transpose(2,0,1)) + plt.close(fig) + att_plots.append(plot) + + return att_plots + else: + return None
\ No newline at end of file |