{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import os" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Data Loading" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# set path to resutls files\n", "path = '../../out/pretrained/clevrer/loci_looped/results/net_loci_looped'\n", "\n", "# load pkl file with results\n", "df = pd.read_pickle(os.path.join(path, 'blackout_metric_average.pkl'))" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "msecomplete_average: 1.281\n", "msecomplete_std: 1.445\n", "\n", "mseblackout_average: 1.724\n", "mseblackout_std: 1.611\n", "\n", "msevisible_average: 1.172\n", "msevisible_std: 1.379\n", "\n", "ssimcomplete_average: 0.963\n", "ssimcomplete_std: 0.020\n", "\n", "ssimblackout_average: 0.954\n", "ssimblackout_std: 0.023\n", "\n", "ssimvisible_average: 0.965\n", "ssimvisible_std: 0.018\n", "\n", "psnrcomplete_average: 35.934\n", "psnrcomplete_std: 2.344\n", "\n", "psnrblackout_average: 34.605\n", "psnrblackout_std: 2.415\n", "\n", "psnrvisible_average: 36.260\n", "psnrvisible_std: 2.208\n", "\n", "percept_distcomplete_average: 0.106\n", "percept_distcomplete_std: 0.032\n", "\n", "percept_distblackout_average: 0.114\n", "percept_distblackout_std: 0.033\n", "\n", "percept_distvisible_average: 0.104\n", "percept_distvisible_std: 0.031\n", "\n", "aricomplete_average: 0.874\n", "aricomplete_std: 0.065\n", "\n", "ariblackout_average: 0.861\n", "ariblackout_std: 0.072\n", "\n", "arivisible_average: 0.878\n", "arivisible_std: 0.062\n", "\n", "faricomplete_average: 0.803\n", "faricomplete_std: 0.091\n", "\n", "fariblackout_average: 0.779\n", "fariblackout_std: 0.106\n", "\n", "farivisible_average: 0.809\n", "farivisible_std: 0.086\n", "\n", "mioucomplete_average: 0.429\n", "mioucomplete_std: 0.048\n", "\n", "mioublackout_average: 0.420\n", "mioublackout_std: 0.052\n", "\n", "miouvisible_average: 0.431\n", "miouvisible_std: 0.047\n", "\n", "apcomplete_average: 0.647\n", "apcomplete_std: 0.124\n", "\n", "apblackout_average: 0.621\n", "apblackout_std: 0.136\n", "\n", "apvisible_average: 0.654\n", "apvisible_std: 0.120\n", "\n", "arcomplete_average: 0.915\n", "arcomplete_std: 0.140\n", "\n", "arblackout_average: 0.880\n", "arblackout_std: 0.162\n", "\n", "arvisible_average: 0.924\n", "arvisible_std: 0.132\n", "\n", "blackoutcomplete_average: 0.197\n", "blackoutcomplete_std: 0.398\n", "\n", "blackoutblackout_average: 1.000\n", "blackoutblackout_std: 0.000\n", "\n", "blackoutvisible_average: 0.000\n", "blackoutvisible_std: 0.000\n", "\n" ] } ], "source": [ "for key,value in df.items():\n", " print(f\"{key}: {value:.3f}\")\n", " if 'std' in key:\n", " print('')" ] } ], "metadata": { "kernelspec": { "display_name": "loci23", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" } }, "nbformat": 4, "nbformat_minor": 2 }