import pickle import cv2 import torch as th from torch.utils.data import Dataset, DataLoader, Subset from torch import nn import os from scripts.evaluation_adept import calculate_tracking_error from scripts.evaluation_clevrer import compute_statistics_summary from scripts.utils.plot_utils import plot_timestep from scripts.utils.eval_metrics import masks_to_boxes, pred_eval_step, postproc_mask from scripts.utils.eval_utils import append_statistics, compute_position_from_mask, load_model, setup_result_folders, store_statistics from scripts.utils.configuration import Configuration from scripts.utils.io import init_device import numpy as np from einops import rearrange, repeat, reduce from copy import deepcopy import lpips import torchvision.transforms as transforms import motmetrics as mm def evaluate(cfg: Configuration, dataset: Dataset, file, n, plot_first_samples = 0): # Set up cpu or gpu training device, verbose = init_device(cfg) # Config cfg_net = cfg.model cfg_net.batch_size = 2 if verbose else 32 #cfg_net.num_objects = 3 cfg_net.inner_loop_enabled = True if 'num_objects_test' in cfg_net: cfg_net.num_objects = cfg_net.num_objects_test dataset = Subset(dataset, range(4)) if verbose else dataset # Load model net = load_model(cfg, cfg_net, file, device) net.eval() net.predictor.enable_att_weights() # config object_view = True individual_views = False root_path = None use_meds = True # get evaluation sets set_test_array, evaluation_modes = get_evaluation_sets(dataset) # memory statistics_template = {'set': [], 'evalmode': [], 'scene': [], 'frame': [], 'image_error_mse': []} statistics_complete_slots = {'set': [], 'evalmode': [], 'scene': [], 'frame': [], 'slot':[], 'bound': [], 'slot_error': [], 'rawmask_size': [], 'alpha_pos': [], 'alpha_ges': []} metric_complete = None # Evaluation Specifics burn_in_length = 10 rollout_length = 90 rollout_length_stats = 10 # only consider the first 10 frames for statistics target_size = (64, 64) # Losses lpipsloss = lpips.LPIPS(net='vgg').to(device) mseloss = nn.MSELoss() for set_test in set_test_array: for evaluation_mode in evaluation_modes: print(f'Start evaluation loop: {evaluation_mode}') # load data dataloader = DataLoader( dataset, num_workers = 0, pin_memory = False, batch_size = cfg_net.batch_size, shuffle = False, drop_last = True, ) # memory root_path, plot_path = setup_result_folders(file, n, set_test, evaluation_mode, object_view, individual_views) metric_complete = {'mse': [], 'ssim': [], 'psnr': [], 'percept_dist': [], 'ari': [], 'fari': [], 'miou': [], 'ap': [], 'ar': [], 'meds': [], 'ari_hidden': [], 'fari_hidden': [], 'miou_hidden': []} video_list = [] # set seed: if there is a number in the evaluation mode, use it as seed plot_mode = True if evaluation_mode[-1].isdigit(): seed = int(evaluation_mode[-1]) th.manual_seed(seed) np.random.seed(seed) print(f'Set seed to {seed}') if int(evaluation_mode[-1]) > 1: plot_mode = False with th.no_grad(): for i, input in enumerate(dataloader): print(f'Processing sample {i+1}/{len(dataloader)}', flush=True) # Load data tensor = input[0].float().to(device) background_fix = input[1].to(device) gt_pos = input[2].to(device) gt_mask = input[3].to(device) gt_pres_mask = input[4].to(device) gt_hidden_mask = input[5].to(device) sequence_len = tensor.shape[1] # Placehodlers mask_cur = None mask_last = None rawmask_last = None position_last = None gestalt_last = None priority_last = None slots_occlusionfactor = None error_last = None # Memory statistics_batch = deepcopy(statistics_template) pred_pos_batch = th.zeros((cfg_net.batch_size, rollout_length, cfg_net.num_objects, 2)).to(device) gt_pos_batch = th.zeros((cfg_net.batch_size, rollout_length, cfg_net.num_objects, 2)).to(device) pred_img_batch = th.zeros((cfg_net.batch_size, rollout_length, 3, target_size[0], target_size[1])).to(device) gt_img_batch = th.zeros((cfg_net.batch_size, rollout_length, 3, target_size[0], target_size[1])).to(device) pred_mask_batch = th.zeros((cfg_net.batch_size, rollout_length, target_size[0], target_size[1])).to(device) pred_hidden_mask_batch = th.zeros((cfg_net.batch_size, rollout_length, target_size[0], target_size[1])).to(device) # Counters num_rollout = 0 num_burnin = 0 # Loop through frames for t_index,t in enumerate(range(-cfg.defaults.teacher_forcing, sequence_len-1)): # Move to next frame t_run = max(t, 0) input = tensor[:,t_run] target_cur = tensor[:,t_run] target = th.clip(tensor[:,t_run+1], 0, 1) gt_pos_t = gt_pos[:,t_run+1]/32-1 gt_pos_t = th.concat((gt_pos_t, th.ones_like(gt_pos_t[:,:,:1])), dim=2) rollout_index = t_run - burn_in_length rollout_active = False if t>=0: if rollout_index >= 0: num_rollout += 1 if ('vidpred_black' in evaluation_mode): input = output_next * 0 rollout_active = True elif ('vidpred_auto' in evaluation_mode): input = output_next rollout_active = True else: num_burnin += 1 # obtain prediction ( output_next, position_next, gestalt_next, priority_next, mask_next, rawmask_next, object_next, background, slots_occlusionfactor, output_cur, position_cur, gestalt_cur, priority_cur, mask_cur, rawmask_cur, object_cur, position_encoder_cur, slots_bounded, slots_partially_occluded_cur, slots_occluded_cur, slots_partially_occluded_next, slots_occluded_next, slots_closed, output_hidden, largest_object, rawmask_hidden, object_hidden ) = net( input, error_last, mask_last, rawmask_last, position_last, gestalt_last, priority_last, background_fix, slots_occlusionfactor, reset = (t == -cfg.defaults.teacher_forcing), evaluate=True, warmup = (t < 0), shuffleslots = True, reset_mask = (t <= 0), allow_spawn = True, show_hidden = False, clean_slots = False, ) # 1. Track error for plots if t >= 0: if (rollout_index >= 0): # store positions per batch if use_meds: if False: pred_pos_batch[:,rollout_index] = rearrange(position_next, 'b (o c) -> b o c', o=cfg_net.num_objects)[:,:,:2] else: pred_pos_batch[:,rollout_index] = compute_position_from_mask(rawmask_next) gt_pos_batch[:,rollout_index] = gt_pos_t[:,:,:2] pred_img_batch[:,rollout_index] = output_next gt_img_batch[:,rollout_index] = target # Here we compute only the foreground segmentation mask pred_mask_batch[:,rollout_index] = postproc_mask(mask_next[:,None,:,None])[:, 0] # Here we compute the hidden segmentation occluded_cur = th.clip(rawmask_next - mask_next, 0, 1)[:,:-1] occluded_sum_cur = 1-(reduce(occluded_cur, 'b c h w -> b h w', 'max') > 0.5).float() occluded_cur = th.cat((occluded_cur, occluded_sum_cur[:,None]), dim=1) pred_hidden_mask_batch[:,rollout_index] = postproc_mask(occluded_cur[:,None,:,None])[:, 0] # 2. Remember output mask_last = mask_next.clone() rawmask_last = rawmask_next.clone() position_last = position_next.clone() gestalt_last = gestalt_next.clone() priority_last = priority_next.clone() # 3. Error for next frame bg_error_next = th.sqrt(reduce((target - background)**2, 'b c h w -> b 1 h w', 'mean')).detach() # prediction error error_next = th.sqrt(reduce((target - output_next)**2, 'b c h w -> b 1 h w', 'mean')).detach() error_next = th.sqrt(error_next) * bg_error_next error_last = error_next.clone() # PLotting if i == 0 and plot_mode: att = net.predictor.get_att_weights() openings = net.get_openings() img_tensor = plot_timestep(cfg, cfg_net, input, target_cur, mask_cur, mask_next, output_next, position_encoder_cur, position_next, rawmask_hidden, rawmask_cur, rawmask_next, largest_object, object_cur, object_next, object_hidden, slots_bounded, slots_partially_occluded_cur, slots_occluded_cur, slots_partially_occluded_next, slots_occluded_next, slots_closed, None, None, error_next, None, True, individual_views, None, None, sequence_len, root_path, None, t_index, t, i, rollout_mode=rollout_active, num_vid=plot_first_samples, att= att, openings=None) video_list.append(img_tensor) # log video if i == 0 and plot_mode: video_tensor = rearrange(th.stack(video_list, dim=0), 't b c h w -> b t h w c') save_videos(video_tensor, f'{plot_path}/object', verbose=verbose, trace_plot=True) # Compute prediction accuracy based on Slotformer metrics (ARI, FARI, mIoU, AP, AR) for b in range(cfg_net.batch_size): # perceptual similarity from slotformer paper metric_dict = pred_eval_step( gt = gt_img_batch[b:b+1], pred = pred_img_batch[b:b+1], pred_mask = pred_mask_batch.long()[b:b+1], pred_mask_hidden = pred_hidden_mask_batch.long()[b:b+1], pred_bbox = None, gt_mask = gt_mask.long()[b:b+1, burn_in_length+1:], gt_mask_hidden = gt_hidden_mask.long()[b:b+1, burn_in_length+1:], gt_pres_mask = gt_pres_mask[b:b+1, burn_in_length+1:], gt_bbox = None, lpips_fn = lpipsloss, eval_traj = True, ) metric_dict['meds'] = distance_eval_step(gt_pos_batch[b], pred_pos_batch[b]) metric_complete = append_statistics(metric_dict, metric_complete) # sanity check if (num_rollout != rollout_length) and (num_burnin != burn_in_length) and ('vidpred' in evaluation_mode): raise ValueError('Number of rollout steps and burnin steps must be equal to the sequence length.') average_dic = compute_statistics_summary(metric_complete, evaluation_mode, root_path=root_path, consider_first_n_frames=rollout_length_stats) # Store statistics with open(os.path.join(f'{root_path}/statistics', f'{evaluation_mode}_metric_complete.pkl'), 'wb') as f: pickle.dump(metric_complete, f) with open(os.path.join(f'{root_path}/statistics', f'{evaluation_mode}_metric_average.pkl'), 'wb') as f: pickle.dump(average_dic, f) print('-- Evaluation Done --') if object_view and os.path.exists(f'{root_path}/tmp.jpg'): os.remove(f'{root_path}/tmp.jpg') pass # store videos as jpgs and then use ffmpeg to convert to video def save_videos(video_tensor, plot_path, verbose=False, fps=10, trace_plot=False): video_tensor = video_tensor.cpu().numpy() img_path = plot_path + '/img' for b in range(video_tensor.shape[0]): os.makedirs(img_path, exist_ok=True) video = video_tensor[b] video = (video).astype(np.uint8) for t in range(video.shape[0]): cv2.imwrite(f'{img_path}/{b}_{t:04d}.jpg', video[t]) if verbose: os.system(f"ffmpeg -r {fps} -pattern_type glob -i '{img_path}/*.jpg' -c:v libx264 -y {plot_path}/{b}.mp4") os.system(f'rm -rf {img_path}') if trace_plot: # trace plot start = 15 length = 20 frame = np.zeros_like(video[0]) for i in range(start,start+length): current = video[i] * (0.1 + (i-start)/length) frame = np.max(np.stack((frame, current)), axis=0) cv2.imwrite(f'{plot_path}/{b}_trace.jpg', frame) def distance_eval_step(gt_pos, pred_pos): meds_per_timestep = [] gt_pred_pairings = None for t in range(pred_pos.shape[0]): frame_gt = gt_pos[t].cpu().numpy() frame_pred = pred_pos[t].cpu().numpy() frame_gt = (frame_gt + 1) * 0.5 frame_pred = (frame_pred + 1) * 0.5 distances = mm.distances.norm2squared_matrix(frame_gt, frame_pred, max_d2=1) if gt_pred_pairings is None: frame_gt_ids = list(range(frame_gt.shape[0])) frame_pred_ids = list(range(frame_pred.shape[0])) gt_pred_pairings = [(frame_gt_ids[g], frame_pred_ids[p]) for g, p in zip(*mm.lap.linear_sum_assignment(distances))] med = 0 for gt_id, pred_id in gt_pred_pairings: curr_med = np.sqrt(((frame_gt[gt_id] - frame_pred[pred_id])**2).sum()) med += curr_med if len(gt_pred_pairings) > 0: meds_per_timestep.append(med / len(gt_pred_pairings)) else: meds_per_timestep.append(np.nan) return meds_per_timestep def compute_plot_statistics(cfg_net, statistics_complete_slots, mseloss, set_test, evaluation_mode, i, statistics_batch, t, target, output_next, mask_next, slots_bounded, slots_closed, rawmask_hidden): statistics_batch = store_statistics(statistics_batch, set_test['type'], evaluation_mode, set_test['samples'][i], t, mseloss(output_next, target).item() ) # compute slot-wise prediction error output_slot = repeat(mask_next[:,:-1], 'b o h w -> b o 3 h w') * repeat(output_next, 'b c h w -> b o c h w', o=cfg_net.num_objects) target_slot = repeat(mask_next[:,:-1], 'b o h w -> b o 3 h w') * repeat(target, 'b c h w -> b o c h w', o=cfg_net.num_objects) slot_error = reduce((output_slot - target_slot)**2, 'b o c h w -> b o', 'mean') # compute rawmask_size rawmask_size = reduce(rawmask_hidden[:, :-1], 'b o h w-> b o', 'sum') statistics_complete_slots = store_statistics(statistics_complete_slots, [set_test['type']] * cfg_net.num_objects, [evaluation_mode] * cfg_net.num_objects, [set_test['samples'][i]] * cfg_net.num_objects, [t] * cfg_net.num_objects, range(cfg_net.num_objects), slots_bounded.cpu().numpy().flatten().astype(int), slot_error.cpu().numpy().flatten(), rawmask_size.cpu().numpy().flatten(), slots_closed[:, :, 1].cpu().numpy().flatten(), slots_closed[:, :, 0].cpu().numpy().flatten(), extend = True) return statistics_complete_slots,statistics_batch def get_evaluation_sets(dataset): set = {"samples": np.arange(len(dataset), dtype=int), "type": "test"} evaluation_modes = ['open', 'vidpred_auto', 'vidpred_black_1', 'vidpred_black_2', 'vidpred_black_3', 'vidpred_black_4', 'vidpred_black_5'] # use 'open' for no blackouts set_test_array = [set] return set_test_array, evaluation_modes