import argparse import sys from data.datasets.ADEPT.dataset import AdeptDataset from data.datasets.CLEVRER.dataset import ClevrerDataset, ClevrerSample, RamImage from scripts.utils.configuration import Configuration from scripts import evaluation_adept, evaluation_clevrer if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-cfg", default="", help='path to the configuration file') parser.add_argument("-load", default="", type=str, help='path to model') parser.add_argument("-n", default="", type=str, help='results name') # Load configuration args = parser.parse_args(sys.argv[1:]) cfg = Configuration(args.cfg) print(f'Evaluating model {args.load}') # Load dataset if cfg.datatype == "clevrer": testset = ClevrerDataset("./", cfg.dataset, 'val', (cfg.model.latent_size[1] * 2**(cfg.model.level*2), cfg.model.latent_size[0] * 2**(cfg.model.level*2)), use_slotformer=True, evaluation=True) evaluation_clevrer.evaluate(cfg, testset, args.load, args.n, plot_frequency= 2, plot_first_samples = 3) # only plotting evaluation_clevrer.evaluate(cfg, testset, args.load, args.n, plot_first_samples = 0) # evaluation elif cfg.datatype == "adept": testset = AdeptDataset("./", cfg.dataset, 'createdown', (cfg.model.latent_size[1] * 2**(cfg.model.level*2), cfg.model.latent_size[0] * 2**(cfg.model.level*2))) evaluation_adept.evaluate(cfg, testset, args.load, args.n, plot_frequency= 1, plot_first_samples = 2) else: raise Exception("Dataset not supported")