import argparse import sys from scripts.utils.configuration import Configuration from scripts import training from data.datasets.CLEVRER.dataset import ClevrerDataset, ClevrerSample, RamImage from data.datasets.ADEPT.dataset import AdeptDataset from data.datasets.BOUNCINGBALLS.dataset import BouncingBallDataset from scripts import evaluation_adept, evaluation_clevrer, evaluation_bb if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-cfg", default="", help='path to the configuration file') parser.add_argument("-n", default=-1, type=int, help='optional run number') parser.add_argument("-load", default="", type=str, help='path to pretrained model or checkpoint') # Load configuration args = parser.parse_args(sys.argv[1:]) cfg = Configuration(args.cfg) cfg.model_path = f"{cfg.model_path}" if args.n >= 0: cfg.model_path = f"{cfg.model_path}.run{args.n}" print(f'Training model {cfg.model_path}') # Load dataset size = (cfg.model.latent_size[1] * 2**(cfg.model.level*2), cfg.model.latent_size[0] * 2**(cfg.model.level*2)) if cfg.datatype == "clevrer": trainset = ClevrerDataset("./", cfg.dataset, "train", size, use_slotformer=False) valset = ClevrerDataset("./", cfg.dataset, "val", size, use_slotformer=True) elif cfg.datatype == "adept": trainset = AdeptDataset("./", cfg.dataset, "train", size) valset = AdeptDataset("./", cfg.dataset, "test", size) valset.train = True elif cfg.datatype == "bouncingballs": trainset = BouncingBallDataset("./", cfg.dataset, "train", size, type_name = cfg.scenario) valset = BouncingBallDataset("./", cfg.dataset, "val", size, type_name = cfg.scenario) else: raise Exception("Dataset not supported") # Final call training.train_loci(cfg, trainset, valset, args.load)