import pandas as pd import warnings import os import argparse warnings.simplefilter(action='ignore', category=FutureWarning) pd.options.mode.chained_assignment = None def eval_adept(path): net = 'net1' # read pickle file tf = pd.DataFrame() sf = pd.DataFrame() af = pd.DataFrame() with open(os.path.join(path, 'trialframe.csv'), 'rb') as f: tf_temp = pd.read_csv(f, index_col=0) tf_temp['net'] = net tf = pd.concat([tf,tf_temp]) with open(os.path.join(path, 'slotframe.csv'), 'rb') as f: sf_temp = pd.read_csv(f, index_col=0) sf_temp['net'] = net sf = pd.concat([sf,sf_temp]) with open(os.path.join(path, 'accframe.csv'), 'rb') as f: af_temp = pd.read_csv(f, index_col=0) af_temp['net'] = net af = pd.concat([af,af_temp]) # cast variables sf['visible'] = sf['visible'].astype(bool) sf['bound'] = sf['bound'].astype(bool) sf['occluder'] = sf['occluder'].astype(bool) sf['inimage'] = sf['inimage'].astype(bool) sf['vanishing'] = sf['vanishing'].astype(bool) sf['alpha_pos'] = 1-sf['alpha_pos'] sf['alpha_ges'] = 1-sf['alpha_ges'] # scale to percentage sf['TE'] = sf['TE'] * 100 # add surprise as dummy code tf['control'] = [('control' in set) for set in tf['set']] sf['control'] = [('control' in set) for set in sf['set']] # STATS: tracking_error_visible = 0 tracking_error_occluded = 0 num_positive_trackings = 0 mota = 0 gate_openings_visible = 0 gate_openings_occluded = 0 print('Tracking Error ------------------------------') grouping = (sf.inimage & sf.bound & ~sf.occluder & sf.control) def get_stats(col): return f' M: {col.mean():.3} , STD: {col.std():.3}, Count: {col.count()}' # When Visible temp = sf[grouping & sf.visible] print(f'Tracking Error when visible:' + get_stats(temp['TE'])) tracking_error_visible = temp['TE'].mean() # When Occluded temp = sf[grouping & ~sf.visible] print(f'Tracking Error when occluded:' + get_stats(temp['TE'])) tracking_error_occluded = temp['TE'].mean() print('Positive Trackings ------------------------------') # succesfull trackings: In the last visible moment of the target, the slot was less than 10% away from the target # determine last visible frame numeric grouping_factors = ['net','set','evalmode','scene','slot'] ff = sf[sf.visible & sf.bound & sf.inimage].groupby(grouping_factors).max() ff.rename(columns = {'frame':'last_visible'}, inplace = True) sf = sf.merge(ff[['last_visible']], on=grouping_factors, how='left') # same for first bound frame ff = sf[sf.visible & sf.bound & sf.inimage].groupby(grouping_factors).min() ff.rename(columns = {'frame':'first_visible'}, inplace = True) sf = sf.merge(ff[['first_visible']], on=grouping_factors, how='left') # add dummy variable to sf sf['last_visible'] = (sf['last_visible'] == sf['frame']) # extract the trials where the target was last visible and threshold the TE ff = sf[sf['last_visible']] ff['tracked_pos'] = (ff['TE'] < 10) ff['tracked_neg'] = (ff['TE'] >= 10) # fill NaN with 0 sf = sf.merge(ff[grouping_factors + ['tracked_pos', 'tracked_neg']], on=grouping_factors, how='left') sf['tracked_pos'].fillna(False, inplace=True) sf['tracked_neg'].fillna(False, inplace=True) # Aggreagte over all scenes temp = sf[(sf['frame']== 1) & ~sf.occluder & sf.control & (sf.first_visible < 20)] temp = temp.groupby(['set', 'evalmode']).sum() temp = temp[['tracked_pos', 'tracked_neg']] temp = temp.reset_index() temp['tracked_pos_pro'] = temp['tracked_pos'] / (temp['tracked_pos'] + temp['tracked_neg']) temp['tracked_neg_pro'] = temp['tracked_neg'] / (temp['tracked_pos'] + temp['tracked_neg']) print(temp) num_positive_trackings = temp['tracked_pos_pro'] print('Mostly Trecked /MOTA ------------------------------') temp = af[af.index == 'OVERALL'] temp['mostly_tracked'] = temp['mostly_tracked'] / temp['num_unique_objects'] temp['partially_tracked'] = temp['partially_tracked'] / temp['num_unique_objects'] temp['mostly_lost'] = temp['mostly_lost'] / temp['num_unique_objects'] print(temp) mota = temp['mota'] print('Openings ------------------------------') grouping = (sf.inimage & sf.bound & ~sf.occluder & sf.control) temp = sf[grouping & sf.visible] print(f'Percept gate openings when visible:' + get_stats(temp['alpha_pos'] + temp['alpha_ges'])) gate_openings_visible = temp['alpha_pos'].mean() + temp['alpha_ges'].mean() temp = sf[grouping & ~sf.visible] print(f'Percept gate openings when occluded:' + get_stats(temp['alpha_pos'] + temp['alpha_ges'])) gate_openings_occluded = temp['alpha_pos'].mean() + temp['alpha_ges'].mean() print('------------------------------------------------') print('------------------------------------------------') str = '' str += f'net: {net}\n' str += f'Tracking Error when visible: {tracking_error_visible:.3}\n' str += f'Tracking Error when occluded: {tracking_error_occluded:.3}\n' str += 'Positive Trackings: ' + ', '.join(f'{val:.3}' for val in num_positive_trackings) + '\n' str += 'MOTA: ' + ', '.join(f'{val:.3}' for val in mota) + '\n' str += f'Percept gate openings when visible: {gate_openings_visible:.3}\n' str += f'Percept gate openings when occluded: {gate_openings_occluded:.3}\n' print(str) # write tstring to file with open(os.path.join(path, 'results.txt'), 'w') as f: f.write(str) if __name__ == "__main__": # use argparse to get the path to the results folder parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, default='') args = parser.parse_args() # setting path to results folder path = args.path eval_adept(path)