1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
|
from pickletools import int4
from torch.utils import data
from typing import Tuple, Union, List
import numpy as np
import json
import math
import cv2
import h5py
import os
import pickle
import sys
import yaml
import warnings
from PIL import Image
from einops import reduce, rearrange
from scripts.utils.plot_utils import get_color
class RamImage():
def __init__(self, path):
fd = open(path, 'rb')
img_str = fd.read()
fd.close()
self.img_raw = np.frombuffer(img_str, np.uint8)
def to_numpy(self):
return cv2.imdecode(self.img_raw, cv2.IMREAD_COLOR)
class AdeptSample(data.Dataset):
def __init__(self, root_path: str, data_path: str, size: Tuple[int, int], type: str):
data_path = os.path.join(root_path, data_path)
image_path = os.path.join(data_path, 'imgs')
self.data_path = data_path
self.size = size
self.imgs = []
self.num_objects = 0
frames = []
for file in os.listdir(image_path):
if (file.startswith("train") or file.startswith("human")) and (file.endswith(".jpg")):
frames.append(os.path.join(image_path, file))
frames.sort()
for i,path in enumerate(frames):
self.imgs.append(RamImage(path))
# load config
config = self.load_config()
self.num_objects = len(config['scene'][0]['objects'])
# add background image
bg_masks, object_visibility, self.intact = self.compute_background_masks(data_path)
self.compute_mean_background(bg_masks)
# extract object information
self.extract_objects(config, object_visibility)
self.compute_unique_positions()
# extract suprise
suprise_dict = {'block': [1], 'delay': [1], 'disappear': [1,2], 'disappear_fixed': [1,2], 'discontinuous': [1,2], 'overturn': [0,3]}
if type in ['train','test']:
self.is_suprising = False
elif type in suprise_dict:
case_name = config['case_name']
self.case_name = case_name
self.case = int(case_name[-1])
self.is_suprising = (self.case in suprise_dict[type])
else:
raise Exception(f'Unknown surprise type: {type}')
def extract_objects(self, config, object_visibility):
self.check_camera_config(config['camera'])
# per object
self.objects = []
self.object_types = []
self.object_colors = []
# per scene
self.object_positions = []
self.object_visibility = []
for f,frame in enumerate(config['scene']):
positions = []
visibility = []
for o,object in enumerate(frame['objects']):
if f == 0:
self.objects.append(object['name'])
self.object_types.append(object['type'])
self.object_colors.append(object['color'])
positions.append(self.get_camera_coords(object['location']))
if f < len(object_visibility) and o < len(object_visibility[f]):
visibility.append(object_visibility[f][o])
else:
visibility.append(False)
self.object_positions.append(positions)
self.object_visibility.append(visibility)
pass
def load_config(self):
# load yaml config file
config = None
for file in os.listdir(self.data_path):
if file.endswith(".yaml"):
with open(os.path.join(self.data_path, file)) as f:
try:
config = yaml.safe_load(f)
except yaml.YAMLError as exc:
print(exc)
# extract data from yaml file
if config is None:
raise Exception(f'No config file found: {self.data_path}')
return config
def downsample(self, size):
self.size = size
imgs = []
path = os.path.join(self.data_path, 'tmp.jpg')
for image_large in self.imgs:
img_small = cv2.resize(image_large.to_numpy(), dsize=(self.size[0], self.size[1]), interpolation=cv2.INTER_CUBIC)
cv2.imwrite(path, img_small)
imgs.append(RamImage(path))
self.imgs = imgs
# remove tmp.jpg
os.remove(path)
# downsample background image
background = rearrange(self.background, 'c h w -> h w c')
background = cv2.resize(background, dsize=(self.size[0], self.size[1]), interpolation=cv2.INTER_CUBIC)
self.background = rearrange(background, 'h w c -> c h w')
return self
def get_data(self):
frames = np.zeros((len(self.imgs),3,self.size[1], self.size[0]),dtype=np.float32)
for i in range(len(self.imgs)):
img = self.imgs[i].to_numpy()
frames[i] = img.transpose(2, 0, 1).astype(np.float32) / 255.0
return frames
def compute_color_background_masks(self):
# access frames
frames = self.get_data()
# add
background_masks = []
for frame in frames:
# filter for color
mask = np.abs(np.min(frame, axis=0) - np.max(frame, axis=0)) > 0.08
# display for control
if False:
# convert flow_mask to rgb
flow_mask_rgb = np.zeros((self.size[1], self.size[0], 3), dtype=np.uint8)
flow_mask_rgb[mask] = [255, 255, 255]
Horiz = np.concatenate((np.einsum('chw->hwc', frame), flow_mask_rgb), axis=1)
cv2.imshow('frame', Horiz)
cv2.waitKey(0)
# convert and store
background_mask = (1 - mask).astype(np.byte)
background_masks.append(background_mask)
return background_masks
def compute_mean_background(self, bg_mask):
# access frames
frames = self.get_data()
bg_mask = np.expand_dims(bg_mask, axis=1)
# mean background masked with bg mask
mean_background = np.mean(frames, axis=0, where=bg_mask == 1)
# replace nan with 0.6
mean_background = np.nan_to_num(mean_background, nan=0.6)
# replace black spots with 0.6
mask = np.mean(mean_background, axis=0) < 0.2
mean_background[:, mask] = 0.6
# display for control
if False:
for frame,mask in zip(frames, bg_mask):
mask = np.repeat(mask, 3, axis=0)
Horiz = np.concatenate((np.einsum('chw->hwc', frame), np.einsum('chw->hwc', mask)), axis=1)
cv2.imshow('frame', Horiz)
cv2.waitKey(0)
self.background = mean_background
pass
def compute_background_masks(self, data_path):
intact = True
frames = []
mask_path = os.path.join(data_path, 'masks')
for file in os.listdir(mask_path):
if (file.endswith(".jpg") or file.endswith(".png")):
ending = file.split('_')[-1]
# bug in data: handle errorneous mask files
if len(str(ending)) == 11:
object_id = int(file.split('_')[-2])
if object_id < self.num_objects:
frames.append(os.path.join(mask_path, file))
frames.sort()
# bug in data: handle the additional/errorneous mask file that is added to some of the mask directories
mod = len(frames) % len(self.imgs)
if mod > 0:
frames = frames[:-mod]
print(f'Warning: Removed {mod} frames from {data_path} due to errorneous mask files.')
intact = False
bg_masks = []
for i,path in enumerate(frames):
bg_mask = 1 - np.array(Image.open(path)).max(axis=2) / 255.0
bg_masks.append(bg_mask)
# add masks of all objects for each frame
bg_masks = rearrange(np.array(bg_masks), '(o l) h w -> l o h w', l = len(self.imgs))
# compute if object is present in frame
object_visibility = reduce(bg_masks, 'l o h w -> l o', 'min') == 0
# add masks of all objects for each frame
bg_masks = reduce(bg_masks, 'l o h w -> l h w', 'min')
return bg_masks, object_visibility, intact
def check_camera_config(self, camera):
if camera['camera_look_at'] != [-1.5, 0, 0]:
print(camera)
raise Exception(f'Camera look_at is not [-1.5, 0, 0] for sample {self.data_path}')
if camera['camera_phi'] != 0:
print(camera)
raise Exception(f'Camera phi is not 0 for sample {self.data_path}')
if camera['camera_rho'] != 7.2:
print(camera)
raise Exception(f'Camera rho is not 7.2 for sample {self.data_path}')
if camera['camera_theta'] != 20:
print(camera)
raise Exception(f'Camera theta is not 20 for sample {self.data_path}')
# converts the blender coordinates to our camera coordinates
def get_camera_coords(self, coord):
camera_matrix = np.array([[ 0.0000, 1.0000, 0.0000, -0.0000], [-0.3420, 0.0000, 0.9397, -0.5130], [ 0.9397, -0.0000, 0.3420, -5.7905], [-0.0000, 0.0000, -0.0000, 1.0000]])
frame = [[0.5, 0.3611111044883728, -1.09375], [0.5, -0.3611111044883728, -1.09375], [-0.5, -0.3611111044883728, -1.09375]]
coord = coord + [1]
co_local = camera_matrix @ coord
co_local = co_local[:3]
z = -co_local[2]
if z == 0.0:
camera_coords = [0.5, 0.5, 0.0]
else:
frame = [-(v / (v[2] / z)) for v in frame]
min_x, max_x = frame[2][0], frame[1][0]
min_y, max_y = frame[1][1], frame[0][1]
x = (co_local[0]- min_x) / (max_x - min_x)
y = (co_local[1] - min_y) / (max_y - min_y)
camera_coords = [x,y,z]
# determine visibility
#visible = camera_coords[2] > 0.0 and camera_coords[0] > 0.0 and camera_coords[0] < 1.0 and camera_coords[1] > 0.0 and camera_coords[1] < 1.0
# revert y axis
camera_coords[1] = 1-camera_coords[1]
# switch x and y axis
camera_coords = [camera_coords[1], camera_coords[0], camera_coords[2]]
# convert to -1 to 1 scale
camera_coords = (np.array(camera_coords) - 0.5) * 2.0
return camera_coords
def compute_unique_positions(self):
# per scene
self.odd_motion = False
# per object
new_object_types = []
new_object_colors = []
# per frame
new_object_positions = []
new_object_visibility = []
# get rid of duplicate object names
unique_names = []
mapping = []
for i,object in enumerate(self.objects):
# get identifier of object
name = object.split('_')[0]
color = self.object_colors[i]
name = name + '_' + color
if name not in unique_names:
unique_names.append(name)
new_object_types.append(self.object_types[i])
new_object_colors.append(self.object_colors[i])
mapping.append([i])
else:
self.odd_motion = True
mapping[unique_names.index(name)].append(i)
# loop though all frames and update positions
for object_positions_of_frame, visibility_of_frame in zip(self.object_positions, self.object_visibility):
positions = []
visibility = []
for c,candidates_per_object in enumerate(mapping):
# unique object and defualt
candidate_winning = candidates_per_object[0]
# duplicated object
if len(candidates_per_object) > 1:
for candidate in candidates_per_object:
candidate_position = object_positions_of_frame[candidate]
candidate_position = candidate_position/2 + 0.5
if candidate_position[2] > 0.0 and candidate_position[0] > 0.0 and candidate_position[0] < 1.0 and candidate_position[1] > 0.0 and candidate_position[1] < 1.0:
candidate_winning = candidate
break
# add to new list
positions.append(object_positions_of_frame[candidate_winning])
visibility.append(visibility_of_frame[candidate_winning])
new_object_positions.append(positions)
new_object_visibility.append(visibility)
# update self
self.object_positions = new_object_positions
self.object_visibility = new_object_visibility
self.objects = unique_names
self.object_types = new_object_types
self.object_colors = new_object_colors
pass
class AdeptDataset(data.Dataset):
def save(self):
state = { 'samples': self.samples }
with open(self.file, "wb") as outfile:
pickle.dump(state, outfile)
def load(self):
with open(self.file, "rb") as infile:
state = pickle.load(infile)
self.samples = state['samples']
def __init__(self, root_path: str, dataset_name: str, type: str, size: Tuple[int, int], type_name: str = None, full_size: Tuple[int, int] = None, create_dataset: bool = False):
if type_name is None:
type_name = type
data_path = f'data/data/video/{dataset_name}'
data_path = os.path.join(root_path, data_path)
self.file = os.path.join(data_path, f'dataset-{size[0]}x{size[1]}-{type_name}.pickle')
self.train = (type == "train")
self.samples = []
if os.path.exists(self.file) and not create_dataset:
self.load()
else:
warnings.filterwarnings(action='ignore', message='Mean of empty slice')
warnings.filterwarnings(action='ignore', message='invalid value encountered in divide')
if (full_size is None) or (size == full_size):
if type in ['train', 'test', 'val']:
data_path = os.path.join(data_path, 'training')
samples = list(filter(lambda x: x.startswith("train"), next(os.walk(data_path))[1]))
else:
# distinguish different scenarios and special case for dissapear and diasppear_fixed
data_path = os.path.join(data_path, 'human')
samples = list(filter(lambda x: type in x and ((type != "disappear") or not ('fixed' in x)), next(os.walk(data_path))[1]))
num_all_samples = len(samples)
if type == "train":
num_samples = int(num_all_samples * 0.9)
sample_start = 0
elif type == "test" or type == "val":
num_samples = int(num_all_samples * 0.1)
sample_start = int(num_all_samples * 0.9)
else:
num_samples = num_all_samples
sample_start = 0
for i, dir in enumerate(samples[sample_start:sample_start+num_samples]):
self.samples.append(AdeptSample(data_path, dir, size, type))
print(f"Loading ADEPT {type} [{i * 100 / num_samples:.2f}]", flush=True)
else:
# load full size dataset
full_dataset = AdeptDataset(root_path, dataset_name, type, full_size, type_name, full_size)
# downsample
for i, sample in enumerate(full_dataset.samples):
self.samples.append(sample.downsample(size))
print(f"Loading ADEPT {type} [{i * 100 / len(full_dataset.samples):.2f}]", flush=True)
self.save()
self.length = len(self.samples)
self.background = None
if False:
for sample in self.samples:
frame = sample.get_data()[0]
frame = np.concatenate((np.einsum('chw->hwc', frame), np.einsum('chw->hwc', sample.background)), axis=1)
cv2.imshow('frame', frame)
cv2.waitKey(0)
if False:
counter = 0
for i, sample in enumerate(self.samples):
frames = sample.get_data()
j = 0
print()
print('Sample', counter)
counter += 1
while j < len(frames):
# overwrite last print
sys.stdout.flush()
sys.stdout.write("\r" + 'Frame: ' + str(j))
frame = frames[j]
frame = np.einsum('chw->hwc', frame)
# add object positions
object_positions_frame = sample.object_positions[j]
object_visibility_frame = sample.object_visibility[j]
for pos_index, position in enumerate(object_positions_frame):
position = position/2 + 0.5
#if not object_visibility_frame[pos_index]:
if position[2] > 0.0 and position[0] > 0.0 and position[0] < 1.0 and position[1] > 0.0 and position[1] < 1.0:
h = int(position[0]*frame.shape[0])
w = int(position[1]*frame.shape[1])
if h > 5 and h < frame.shape[0]-5 and w > 5 and w < frame.shape[1]-5:
frame[(h-5):(h+5), (w-5):(w+5), :] = get_color(pos_index)
cv2.imshow('frame', frame)
if True:
# wait for a second
cv2.waitKey(30)
j += 1
else:
# if right error is pressed move on frame in the future, if left error is pressed move on frame in the past
keys = cv2.waitKey(10) & 0xFF
if keys == ord('q'):
j -= 1
elif keys == ord('w'):
j += 1
print(f"AdeptDataset[{type}]: {self.length}")
if len(self) == 0:
raise FileNotFoundError(f'Found no dataset at {data_path}')
def __len__(self):
return self.length
def __getitem__(self, index: int):
if self.train:
return (
self.samples[index].get_data(),
self.samples[index].background
)
occluder_mask = np.array([el == 'Occluder' for el in self.samples[index].object_types])
return (
self.samples[index].get_data(),
self.samples[index].background,
self.samples[index].is_suprising,
np.array(self.samples[index].object_positions),
np.array(self.samples[index].object_visibility),
occluder_mask
)
|