1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
|
import torch.nn as nn
import torch as th
from model.nn.eprop_gate_l0rd import EpropGateL0rdShared
from model.nn.eprop_transformer_utils import AlphaAttention, InputEmbeding, OutputEmbeding
class EpropGateL0rdTransformerShared(nn.Module):
def __init__(
self,
channels,
multiplier,
num_objects,
batch_size,
heads,
depth,
reg_lambda,
dropout=0.0,
exchange_length = 48,
):
super(EpropGateL0rdTransformerShared, self).__init__()
num_inputs = channels
num_outputs = channels
num_hidden = channels * multiplier
num_hidden_gatelord = num_hidden + exchange_length
num_hidden_attention = num_hidden + exchange_length + num_hidden_gatelord
self.num_hidden = num_hidden
self.num_hidden_gatelord = num_hidden_gatelord
#print(f"Predictor channels: {num_hidden}@({num_hidden // heads}x{heads})")
self.register_buffer('hidden', th.zeros(batch_size * num_objects, num_hidden_gatelord), persistent=False)
self.register_buffer('exchange_code', th.zeros(batch_size * num_objects, exchange_length), persistent=False)
self.depth = depth
self.input_embeding = InputEmbeding(num_inputs, num_hidden)
self.attention = nn.Sequential(*[AlphaAttention(num_hidden_attention, num_objects, heads, dropout) for _ in range(depth)])
self.l0rds = nn.Sequential(*[EpropAlphaGateL0rdShared(num_hidden_gatelord, batch_size * num_objects, reg_lambda) for _ in range(depth)])
self.output_embeding = OutputEmbeding(num_hidden, num_outputs)
def get_openings(self):
openings = []
for i in range(self.depth):
openings.append(self.l0rds[i].l0rd.openings_perslot)
openings = th.mean(th.stack(openings, dim=0), dim=0)
return openings
def get_hidden(self):
return self.hidden
def set_hidden(self, hidden):
self.hidden = hidden
def detach(self):
self.hidden = self.hidden.detach()
def reset_state(self):
self.hidden = th.zeros_like(self.hidden)
def forward(self, x: th.Tensor) -> th.Tensor:
x = self.input_embeding(x)
exchange_code = self.exchange_code.clone() * 0.0
x_ex = th.concat((x, exchange_code), dim=1)
for i in range(self.depth):
# attention layer
att = self.attention(th.concat((x_ex, self.hidden), dim=1))
x_ex = att[:, :self.num_hidden_gatelord]
# gatelord layer
x_ex, self.hidden = self.l0rds[i](x_ex, self.hidden)
# only yield x
x = x_ex[:, :self.num_hidden]
return self.output_embeding(x)
class EpropAlphaGateL0rdShared(nn.Module):
def __init__(self, num_hidden, batch_size, reg_lambda):
super(EpropAlphaGateL0rdShared, self).__init__()
self.alpha = nn.Parameter(th.zeros(1)+1e-12)
self.l0rd = EpropGateL0rdShared(
num_inputs = num_hidden,
num_hidden = num_hidden,
num_outputs = num_hidden,
reg_lambda = reg_lambda,
batch_size = batch_size
)
def forward(self, input, hidden):
output, hidden = self.l0rd(input, hidden)
return input + self.alpha * output, hidden
|