1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
|
import torch as th
from torch.utils.data import Dataset, DataLoader, Subset
from torch import nn
import os
from scripts.utils.eval_adept import eval_adept
from scripts.utils.plot_utils import plot_timestep
from scripts.utils.configuration import Configuration
from scripts.utils.io import init_device
import numpy as np
from einops import rearrange, repeat, reduce
import motmetrics as mm
from copy import deepcopy
import pandas as pd
from scripts.utils.eval_utils import append_statistics, load_model, setup_result_folders, store_statistics
def evaluate(cfg: Configuration, dataset: Dataset, file, n, plot_frequency= 1, plot_first_samples = 2):
# Set up cpu or gpu training
device, verbose = init_device(cfg)
# Config
cfg_net = cfg.model
cfg_net.batch_size = 1
cfg_net.inner_loop_enabled = (cfg.max_updates > cfg.phases.start_inner_loop)
# Load model
net = load_model(cfg, cfg_net, file, device)
net.eval()
net.predictor.enable_att_weights()
# Plot config
object_view = True
individual_views = False
root_path = None
# get evaluation sets for control and surprise condition
set_test_array, evaluation_modes = get_evaluation_sets(dataset)
# memory
statistics_template = {'set': [], 'evalmode': [], 'scene': [], 'frame': [], 'image_error': [], 'TE': []}
statistics_complete = deepcopy(statistics_template)
statistics_complete_slots = {'set': [], 'evalmode': [], 'scene': [], 'frame': [], 'slot':[], 'TE': [], 'visible': [], 'bound': [], 'occluder': [], 'inimage': [], 'slot_error': [], 'mask_size': [], 'rawmask_size': [], 'rawmask_size_hidden': [], 'alpha_pos': [], 'alpha_ges': [], 'object_id': [], 'vanishing': []}
acc_memory_complete = None
for set_test in set_test_array:
for evaluation_mode in evaluation_modes:
print(f'Start evaluation loop: {evaluation_mode} - {set_test["type"]}')
# Load data
dataloader = DataLoader(
Subset(dataset, set_test['samples']),
num_workers = 1,
pin_memory = False,
batch_size = 1,
shuffle = False
)
# memory
mseloss = nn.MSELoss()
root_path, plot_path = setup_result_folders(file, n, set_test, evaluation_mode, object_view, individual_views)
acc_memory_eval = []
with th.no_grad():
for i, input in enumerate(dataloader):
print(f'Processing sample {i+1}/{len(dataloader)}', flush=True)
# Data
tensor = input[0].float().to(device)
background_fix = input[1].to(device)
gt_object_positions = input[3].to(device)
gt_object_visibility = input[4].to(device)
gt_occluder_mask = input[5].to(device)
# Apply skip frames
gt_object_positions = gt_object_positions[:,range(0, tensor.shape[1], cfg.defaults.skip_frames)]
gt_object_visibility = gt_object_visibility[:,range(0, tensor.shape[1], cfg.defaults.skip_frames)]
tensor = tensor[:,range(0, tensor.shape[1], cfg.defaults.skip_frames)]
sequence_len = tensor.shape[1]
# Placehodlers
mask_cur = None
mask_last = None
rawmask_last = None
position_last = None
gestalt_last = None
priority_last = None
gt_positions_target = None
slots_occlusionfactor = None
error_last = None
# Memory
association_table = th.ones(cfg_net.num_objects).to(device) * -1
acc = mm.MOTAccumulator(auto_id=True)
statistics_batch = deepcopy(statistics_template)
slots_vanishing_memory = np.zeros(cfg_net.num_objects)
# loop through frames
for t_index,t in enumerate(range(-cfg.defaults.teacher_forcing, sequence_len-1)):
# Move to next frame
t_run = max(t, 0)
input = tensor[:,t_run]
target = th.clip(tensor[:,t_run+1], 0, 1)
gt_positions_target = gt_object_positions[:,t_run]
gt_positions_target_next = gt_object_positions[:,t_run+1]
gt_visibility_target = gt_object_visibility[:,t_run]
# Forward Pass
(
output_next,
position_next,
gestalt_next,
priority_next,
mask_next,
rawmask_next,
object_next,
background,
slots_occlusionfactor,
output_cur,
position_cur,
gestalt_cur,
priority_cur,
mask_cur,
rawmask_cur,
object_cur,
position_encoder_cur,
slots_bounded,
slots_partially_occluded_cur,
slots_occluded_cur,
slots_partially_occluded_next,
slots_occluded_next,
slots_closed,
output_hidden,
largest_object,
rawmask_hidden,
object_hidden
) = net(
input,
error_last,
mask_last,
rawmask_last,
position_last,
gestalt_last,
priority_last,
background_fix,
slots_occlusionfactor,
reset = (t == -cfg.defaults.teacher_forcing),
evaluate=True,
warmup = (t < 0),
shuffleslots = False,
reset_mask = (t <= 0),
allow_spawn = True,
show_hidden = True,
clean_slots = (t <= 0),
)
# 1. Track error
if t >= 0:
# Position error: MSE between predicted position and target position
tracking_error, tracking_error_perslot, association_table, slots_visible, slots_in_image, slots_occluder = calculate_tracking_error(gt_positions_target, gt_visibility_target, position_cur, cfg_net.num_objects, slots_bounded, slots_occluded_cur, association_table, gt_occluder_mask)
statistics_batch = store_statistics(statistics_batch,
set_test['type'],
evaluation_mode,
set_test['samples'][i],
t,
mseloss(output_next, target).item(),
tracking_error)
# Compute rawmask_size
rawmask_size, rawmask_size_hidden, mask_size = compute_mask_sizes(mask_next, rawmask_next, rawmask_hidden)
# Compute slot-wise prediction error
slot_error = compute_slot_error(cfg_net, target, output_next, mask_next, mask_size)
# Check if objects vanishes: they leave the scene suprsingly in the suprrise condition
slots_vanishing = compute_vanishing_slots(gt_positions_target, association_table, gt_positions_target_next)
slots_vanishing_memory = slots_vanishing + slots_vanishing_memory
# Store slot statistics
statistics_complete_slots = store_statistics(statistics_complete_slots,
[set_test['type']] * cfg_net.num_objects,
[evaluation_mode] * cfg_net.num_objects,
[set_test['samples'][i]] * cfg_net.num_objects,
[t] * cfg_net.num_objects,
range(cfg_net.num_objects),
tracking_error_perslot.cpu().numpy().flatten(),
slots_visible.cpu().numpy().flatten().astype(int),
slots_bounded.cpu().numpy().flatten().astype(int),
slots_occluder.cpu().numpy().flatten().astype(int),
slots_in_image.cpu().numpy().flatten().astype(int),
slot_error.cpu().numpy().flatten(),
mask_size.cpu().numpy().flatten(),
rawmask_size.cpu().numpy().flatten(),
rawmask_size_hidden.cpu().numpy().flatten(),
slots_closed[:, :, 1].cpu().numpy().flatten(),
slots_closed[:, :, 0].cpu().numpy().flatten(),
association_table[0].cpu().numpy().flatten().astype(int),
extend = True)
# Compute MOTA
acc = update_mota_acc(acc, gt_positions_target, position_cur, slots_bounded, cfg_net.num_objects, gt_occluder_mask, slots_occluder, rawmask_next)
# 2. Remember output
mask_last = mask_next.clone()
rawmask_last = rawmask_next.clone()
position_last = position_next.clone()
gestalt_last = gestalt_next.clone()
priority_last = priority_next.clone()
# 3. Error for next frame
bg_error_next = th.sqrt(reduce((target - background)**2, 'b c h w -> b 1 h w', 'mean')).detach()
error_next = th.sqrt(reduce((target - output_next)**2, 'b c h w -> b 1 h w', 'mean')).detach()
error_next = th.sqrt(error_next) * bg_error_next
error_last = error_next.clone()
# 4. Plot
if (t % plot_frequency == 0) and (i < plot_first_samples) and (t >= 0):
att = net.predictor.get_att_weights()
openings = net.get_openings()
plot_timestep(cfg, cfg_net, input, target, mask_cur, mask_next, output_next, position_encoder_cur, position_next, rawmask_hidden, rawmask_cur, rawmask_next, largest_object, object_cur, object_next, object_hidden, slots_bounded, slots_partially_occluded_cur, slots_occluded_cur, slots_partially_occluded_next, slots_occluded_next, slots_closed, gt_positions_target_next, association_table, error_next, output_hidden, object_view, individual_views, statistics_complete_slots, statistics_batch, sequence_len, root_path, plot_path, t_index, t, i, att= att, openings=openings)
# fill jumping statistics
statistics_complete_slots['vanishing'].extend(np.tile(slots_vanishing_memory.astype(int), t+1))
# store batch statistics in complete statistics
acc_memory_eval.append(acc)
statistics_complete = append_statistics(statistics_complete, statistics_batch, extend = True)
summary = mm.metrics.create().compute_many(acc_memory_eval, metrics=mm.metrics.motchallenge_metrics, generate_overall=True)
summary['set'] = set_test['type']
summary['evalmode'] = evaluation_mode
acc_memory_complete = summary.copy() if acc_memory_complete is None else pd.concat([acc_memory_complete, summary])
print('-- Evaluation Done --')
pd.DataFrame(statistics_complete).to_csv(f'{root_path}/statistics/trialframe.csv')
pd.DataFrame(statistics_complete_slots).to_csv(f'{root_path}/statistics/slotframe.csv')
pd.DataFrame(acc_memory_complete).to_csv(f'{root_path}/statistics/accframe.csv')
if object_view and os.path.exists(f'{root_path}/tmp.jpg'):
os.remove(f'{root_path}/tmp.jpg')
eval_adept(f'{root_path}/statistics')
pass
def compute_vanishing_slots(gt_positions_target, association_table, gt_positions_target_next):
objects_vanishing = th.abs(gt_positions_target[:,:,2] - gt_positions_target_next[:,:,2]) > 0.2
objects_vanishing = th.where(objects_vanishing.flatten())[0]
slots_vanishing = [(obj.item() in objects_vanishing) for obj in association_table[0]]
return slots_vanishing
def compute_slot_error(cfg_net, target, output_next, mask_next, mask_size):
output_slot = repeat(mask_next[:,:-1], 'b o h w -> b o 3 h w') * repeat(output_next, 'b c h w -> b o c h w', o=cfg_net.num_objects)
target_slot = repeat(mask_next[:,:-1], 'b o h w -> b o 3 h w') * repeat(target, 'b c h w -> b o c h w', o=cfg_net.num_objects)
slot_error = reduce((output_slot - target_slot)**2, 'b o c h w -> b o', 'mean')/mask_size
return slot_error
def compute_mask_sizes(mask_next, rawmask_next, rawmask_hidden):
rawmask_size = reduce(rawmask_next[:, :-1], 'b o h w-> b o', 'sum')
rawmask_size_hidden = reduce(rawmask_hidden[:, :-1], 'b o h w-> b o', 'sum')
mask_size = reduce(mask_next[:, :-1], 'b o h w-> b o', 'sum')
return rawmask_size,rawmask_size_hidden,mask_size
def update_mota_acc(acc, gt_positions, estimated_positions, slots_bounded, cfg_num_objects, gt_occluder_mask, slots_occluder, rawmask, ignore_occluder = False):
# num objects
num_objects = len(gt_positions[0])
# get rid of batch dimension and priority dimension
pos = rearrange(estimated_positions.detach()[0], '(o c) -> o c', o=cfg_num_objects)[:, :2]
targets = gt_positions[0, :, :2]
# stretch positions to account for frame ratio, Specific for ADEPT!
pos = th.clip(pos, -1, 1)
pos[:, 0] = pos[:, 0] * 1.5
targets[:, 0] = targets[:, 0] * 1.5
# remove objects that are not in the image
edge = 1
in_image = th.cat([targets[:, 0] < (1.5 * edge), targets[:, 0] > (-1.5 * edge), targets[:, 1] < (1 * edge), targets[:, 1] > (-1 * edge)])
in_image = th.all(rearrange(in_image, '(c o) -> o c', o=num_objects), dim=1)
if ignore_occluder:
in_image = (gt_occluder_mask[0] == 0) * in_image
targets = targets[in_image]
# test if position estimates in image
in_image_pos = th.cat([pos[:, 0] < (1.5 * edge), pos[:, 0] > (-1.5 * edge), pos[:, 1] < (1 * edge), pos[:, 1] > (-1 * edge)])
in_image_pos = th.all(rearrange(in_image_pos, '(c o) -> c o', o=cfg_num_objects), dim=0, keepdim=True)
# only position estimates that are in image and bound
if rawmask is not None:
rawmask_size = reduce(rawmask[:, :-1], 'b o h w-> b o', 'sum')
m = (slots_bounded * in_image_pos * (rawmask_size > 100)).bool()
else:
m = (slots_bounded * in_image_pos).bool()
if ignore_occluder:
m = (m * (1 - slots_occluder)).bool()
pos = pos[repeat(m, '1 o -> o 2')]
pos = rearrange(pos, '(o c) -> o c', c = 2)
# compute pairwise distances
diagonal_length = th.sqrt(th.sum(th.tensor([2,3])**2)).item()
C = mm.distances.norm2squared_matrix(targets.cpu().numpy(), pos.cpu().numpy(), max_d2=diagonal_length*0.1)
# upadate accumulator
acc.update( (th.where(in_image)[0]).cpu(), (th.where(m)[1]).cpu(), C)
return acc
def calculate_tracking_error(gt_positions_target, gt_visibility_target, position_cur, cfg_num_slots, slots_bounded, slots_occluded_cur, association_table, gt_occluder_mask):
# tracking utils
gt_positions_target = gt_positions_target.clone()
pdist = nn.PairwiseDistance(p=2).to(position_cur.device)
# 1. association of newly bounded slots to ground truth objects
# num objects
num_objects = len(gt_positions_target[0])
# get rid of batch dimension and priority dimension
pos = rearrange(position_cur.clone()[0], '(o c) -> o c', o=cfg_num_slots)[:, :2]
targets = gt_positions_target[0, :, :2]
# stretch positions to account for frame ratio, Specific for ADEPT!
pos = th.clip(pos, -1, 1)
pos[:, 0] = pos[:, 0] * 1.5
targets[:, 0] = targets[:, 0] * 1.5
diagonal_length = th.sqrt(th.sum(th.tensor([2,3])**2))
# reshape and repeat for comparison
pos = repeat(pos, 'o c -> (o r) c', r=num_objects)
targets = repeat(targets, 'o c -> (r o) c', r=cfg_num_slots)
# comparison
distance = pdist(pos, targets)
distance = rearrange(distance, '(o r) -> o r', r=num_objects)
# find closest target for each slot
distance = th.min(distance, dim=1, keepdim=True)
# update association table
slots_newly_bounded = slots_bounded * (association_table == -1)
if slots_occluded_cur is not None:
slots_newly_bounded = slots_newly_bounded * (1-slots_occluded_cur)
association_table = association_table * (1-slots_newly_bounded) + slots_newly_bounded * distance[1].T
# 2. position error
# get rid of batch dimension and priority dimension
pos = rearrange(position_cur.clone()[0], '(o c) -> o c', o=cfg_num_slots)[:, :2]
targets = gt_positions_target[0, :, :3]
# stretch positions to account for frame ratio, Specific for ADEPT!
pos[:, 0] = pos[:, 0] * 1.5
targets[:, 0] = targets[:, 0] * 1.5
# gather targets according to association table
targets = targets[association_table.long()][0]
# determine which slosts are within the image
slots_in_image = th.cat([targets[:, 0] < 1.5, targets[:, 0] > -1.5, targets[:, 1] < 1, targets[:, 1] > -1, targets[:, 2] > 0])
slots_in_image = rearrange(slots_in_image, '(c o) -> o c', o=cfg_num_slots)
slots_in_image = th.all(slots_in_image, dim=1)
# define which slots to consider for tracking error
slots_to_track = slots_bounded * slots_in_image
# compute position error
targets = targets[:, :2]
tracking_error_perslot = th.sqrt(th.sum((pos - targets)**2, dim=1))/diagonal_length
tracking_error_perslot = tracking_error_perslot[None, :] * slots_to_track
tracking_error = th.sum(tracking_error_perslot).item()/max(th.sum(slots_to_track).item(), 1)
# compute which slots are visible
visible_objects = th.where(gt_visibility_target[0] == 1)[0]
slots_visible = th.tensor([[int(obj.item()) in visible_objects for obj in association_table[0]]]).float().to(slots_to_track.device)
slots_visible = slots_visible * slots_to_track
# determine which objects are bound to the occluder
occluder_objects = th.where(gt_occluder_mask[0] == 1)[0]
slots_occluder = th.tensor([[int(obj.item()) in occluder_objects for obj in association_table[0]]]).float().to(slots_to_track.device)
slots_occluder = slots_occluder * slots_to_track
return tracking_error, tracking_error_perslot, association_table, slots_visible, slots_in_image, slots_occluder
def get_evaluation_sets(dataset):
# Standad evaluation
evaluation_modes = ['open']
# Important!
# filter different scenarios: 1 as control and 0,3 as surprise (see Smith et al. 2020)
suprise_mask = [(sample.case in [1]) for i,sample in enumerate(dataset.samples)]
control_mask = [(sample.case in [0,3]) for i,sample in enumerate(dataset.samples)]
# Create test sets
set_surprise = {"samples": np.where(suprise_mask)[0].tolist(), "type": 'surprise'}
set_control = {"samples": np.where(control_mask)[0].tolist(), "type": 'control'}
set_test_array = [set_control, set_surprise]
return set_test_array, evaluation_modes
|