1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
|
import pickle
import cv2
import torch as th
from torch.utils.data import Dataset, DataLoader, Subset
from torch import nn
import os
from scripts.evaluation_adept import calculate_tracking_error
from scripts.evaluation_clevrer import compute_statistics_summary
from scripts.utils.plot_utils import plot_timestep
from scripts.utils.eval_metrics import masks_to_boxes, pred_eval_step, postproc_mask
from scripts.utils.eval_utils import append_statistics, compute_position_from_mask, load_model, setup_result_folders, store_statistics
from scripts.utils.configuration import Configuration
from scripts.utils.io import init_device
import numpy as np
from einops import rearrange, repeat, reduce
from copy import deepcopy
import lpips
import torchvision.transforms as transforms
import motmetrics as mm
def evaluate(cfg: Configuration, dataset: Dataset, file, n, plot_first_samples = 0):
# Set up cpu or gpu training
device, verbose = init_device(cfg)
# Config
cfg_net = cfg.model
cfg_net.batch_size = 2 if verbose else 32
#cfg_net.num_objects = 3
cfg_net.inner_loop_enabled = True
if 'num_objects_test' in cfg_net:
cfg_net.num_objects = cfg_net.num_objects_test
dataset = Subset(dataset, range(4)) if verbose else dataset
# Load model
net = load_model(cfg, cfg_net, file, device)
net.eval()
net.predictor.enable_att_weights()
# config
object_view = True
individual_views = False
root_path = None
use_meds = True
# get evaluation sets
set_test_array, evaluation_modes = get_evaluation_sets(dataset)
# memory
statistics_template = {'set': [], 'evalmode': [], 'scene': [], 'frame': [], 'image_error_mse': []}
statistics_complete_slots = {'set': [], 'evalmode': [], 'scene': [], 'frame': [], 'slot':[], 'bound': [], 'slot_error': [], 'rawmask_size': [], 'alpha_pos': [], 'alpha_ges': []}
metric_complete = None
# Evaluation Specifics
burn_in_length = 10
rollout_length = 90
rollout_length_stats = 10 # only consider the first 10 frames for statistics
target_size = (64, 64)
# Losses
lpipsloss = lpips.LPIPS(net='vgg').to(device)
mseloss = nn.MSELoss()
for set_test in set_test_array:
for evaluation_mode in evaluation_modes:
print(f'Start evaluation loop: {evaluation_mode}')
# load data
dataloader = DataLoader(
dataset,
num_workers = 0,
pin_memory = False,
batch_size = cfg_net.batch_size,
shuffle = False,
drop_last = True,
)
# memory
root_path, plot_path = setup_result_folders(file, n, set_test, evaluation_mode, object_view, individual_views)
metric_complete = {'mse': [], 'ssim': [], 'psnr': [], 'percept_dist': [], 'ari': [], 'fari': [], 'miou': [], 'ap': [], 'ar': [], 'meds': [], 'ari_hidden': [], 'fari_hidden': [], 'miou_hidden': []}
video_list = []
# set seed: if there is a number in the evaluation mode, use it as seed
plot_mode = True
if evaluation_mode[-1].isdigit():
seed = int(evaluation_mode[-1])
th.manual_seed(seed)
np.random.seed(seed)
print(f'Set seed to {seed}')
if int(evaluation_mode[-1]) > 1:
plot_mode = False
with th.no_grad():
for i, input in enumerate(dataloader):
print(f'Processing sample {i+1}/{len(dataloader)}', flush=True)
# Load data
tensor = input[0].float().to(device)
background_fix = input[1].to(device)
gt_pos = input[2].to(device)
gt_mask = input[3].to(device)
gt_pres_mask = input[4].to(device)
gt_hidden_mask = input[5].to(device)
sequence_len = tensor.shape[1]
# Placehodlers
mask_cur = None
mask_last = None
rawmask_last = None
position_last = None
gestalt_last = None
priority_last = None
slots_occlusionfactor = None
error_last = None
# Memory
statistics_batch = deepcopy(statistics_template)
pred_pos_batch = th.zeros((cfg_net.batch_size, rollout_length, cfg_net.num_objects, 2)).to(device)
gt_pos_batch = th.zeros((cfg_net.batch_size, rollout_length, cfg_net.num_objects, 2)).to(device)
pred_img_batch = th.zeros((cfg_net.batch_size, rollout_length, 3, target_size[0], target_size[1])).to(device)
gt_img_batch = th.zeros((cfg_net.batch_size, rollout_length, 3, target_size[0], target_size[1])).to(device)
pred_mask_batch = th.zeros((cfg_net.batch_size, rollout_length, target_size[0], target_size[1])).to(device)
pred_hidden_mask_batch = th.zeros((cfg_net.batch_size, rollout_length, target_size[0], target_size[1])).to(device)
# Counters
num_rollout = 0
num_burnin = 0
# Loop through frames
for t_index,t in enumerate(range(-cfg.defaults.teacher_forcing, sequence_len-1)):
# Move to next frame
t_run = max(t, 0)
input = tensor[:,t_run]
target_cur = tensor[:,t_run]
target = th.clip(tensor[:,t_run+1], 0, 1)
gt_pos_t = gt_pos[:,t_run+1]/32-1
gt_pos_t = th.concat((gt_pos_t, th.ones_like(gt_pos_t[:,:,:1])), dim=2)
rollout_index = t_run - burn_in_length
rollout_active = False
if t>=0:
if rollout_index >= 0:
num_rollout += 1
if ('vidpred_black' in evaluation_mode):
input = output_next * 0
rollout_active = True
elif ('vidpred_auto' in evaluation_mode):
input = output_next
rollout_active = True
else:
num_burnin += 1
# obtain prediction
(
output_next,
position_next,
gestalt_next,
priority_next,
mask_next,
rawmask_next,
object_next,
background,
slots_occlusionfactor,
output_cur,
position_cur,
gestalt_cur,
priority_cur,
mask_cur,
rawmask_cur,
object_cur,
position_encoder_cur,
slots_bounded,
slots_partially_occluded_cur,
slots_occluded_cur,
slots_partially_occluded_next,
slots_occluded_next,
slots_closed,
output_hidden,
largest_object,
rawmask_hidden,
object_hidden
) = net(
input,
error_last,
mask_last,
rawmask_last,
position_last,
gestalt_last,
priority_last,
background_fix,
slots_occlusionfactor,
reset = (t == -cfg.defaults.teacher_forcing),
evaluate=True,
warmup = (t < 0),
shuffleslots = True,
reset_mask = (t <= 0),
allow_spawn = True,
show_hidden = False,
clean_slots = False,
)
# 1. Track error for plots
if t >= 0:
if (rollout_index >= 0):
# store positions per batch
if use_meds:
if False:
pred_pos_batch[:,rollout_index] = rearrange(position_next, 'b (o c) -> b o c', o=cfg_net.num_objects)[:,:,:2]
else:
pred_pos_batch[:,rollout_index] = compute_position_from_mask(rawmask_next)
gt_pos_batch[:,rollout_index] = gt_pos_t[:,:,:2]
pred_img_batch[:,rollout_index] = output_next
gt_img_batch[:,rollout_index] = target
# Here we compute only the foreground segmentation mask
pred_mask_batch[:,rollout_index] = postproc_mask(mask_next[:,None,:,None])[:, 0]
# Here we compute the hidden segmentation
occluded_cur = th.clip(rawmask_next - mask_next, 0, 1)[:,:-1]
occluded_sum_cur = 1-(reduce(occluded_cur, 'b c h w -> b h w', 'max') > 0.5).float()
occluded_cur = th.cat((occluded_cur, occluded_sum_cur[:,None]), dim=1)
pred_hidden_mask_batch[:,rollout_index] = postproc_mask(occluded_cur[:,None,:,None])[:, 0]
# 2. Remember output
mask_last = mask_next.clone()
rawmask_last = rawmask_next.clone()
position_last = position_next.clone()
gestalt_last = gestalt_next.clone()
priority_last = priority_next.clone()
# 3. Error for next frame
bg_error_next = th.sqrt(reduce((target - background)**2, 'b c h w -> b 1 h w', 'mean')).detach()
# prediction error
error_next = th.sqrt(reduce((target - output_next)**2, 'b c h w -> b 1 h w', 'mean')).detach()
error_next = th.sqrt(error_next) * bg_error_next
error_last = error_next.clone()
# PLotting
if i == 0 and plot_mode:
att = net.predictor.get_att_weights()
openings = net.get_openings()
img_tensor = plot_timestep(cfg, cfg_net, input, target_cur, mask_cur, mask_next, output_next, position_encoder_cur, position_next, rawmask_hidden, rawmask_cur, rawmask_next, largest_object, object_cur, object_next, object_hidden, slots_bounded, slots_partially_occluded_cur, slots_occluded_cur, slots_partially_occluded_next, slots_occluded_next, slots_closed, None, None, error_next, None, True, individual_views, None, None, sequence_len, root_path, None, t_index, t, i, rollout_mode=rollout_active, num_vid=plot_first_samples, att= att, openings=None)
video_list.append(img_tensor)
# log video
if i == 0 and plot_mode:
video_tensor = rearrange(th.stack(video_list, dim=0), 't b c h w -> b t h w c')
save_videos(video_tensor, f'{plot_path}/object', verbose=verbose, trace_plot=True)
# Compute prediction accuracy based on Slotformer metrics (ARI, FARI, mIoU, AP, AR)
for b in range(cfg_net.batch_size):
# perceptual similarity from slotformer paper
metric_dict = pred_eval_step(
gt = gt_img_batch[b:b+1],
pred = pred_img_batch[b:b+1],
pred_mask = pred_mask_batch.long()[b:b+1],
pred_mask_hidden = pred_hidden_mask_batch.long()[b:b+1],
pred_bbox = None,
gt_mask = gt_mask.long()[b:b+1, burn_in_length+1:],
gt_mask_hidden = gt_hidden_mask.long()[b:b+1, burn_in_length+1:],
gt_pres_mask = gt_pres_mask[b:b+1, burn_in_length+1:],
gt_bbox = None,
lpips_fn = lpipsloss,
eval_traj = True,
)
metric_dict['meds'] = distance_eval_step(gt_pos_batch[b], pred_pos_batch[b])
metric_complete = append_statistics(metric_dict, metric_complete)
# sanity check
if (num_rollout != rollout_length) and (num_burnin != burn_in_length) and ('vidpred' in evaluation_mode):
raise ValueError('Number of rollout steps and burnin steps must be equal to the sequence length.')
average_dic = compute_statistics_summary(metric_complete, evaluation_mode, root_path=root_path, consider_first_n_frames=rollout_length_stats)
# Store statistics
with open(os.path.join(f'{root_path}/statistics', f'{evaluation_mode}_metric_complete.pkl'), 'wb') as f:
pickle.dump(metric_complete, f)
with open(os.path.join(f'{root_path}/statistics', f'{evaluation_mode}_metric_average.pkl'), 'wb') as f:
pickle.dump(average_dic, f)
print('-- Evaluation Done --')
if object_view and os.path.exists(f'{root_path}/tmp.jpg'):
os.remove(f'{root_path}/tmp.jpg')
pass
# store videos as jpgs and then use ffmpeg to convert to video
def save_videos(video_tensor, plot_path, verbose=False, fps=10, trace_plot=False):
video_tensor = video_tensor.cpu().numpy()
img_path = plot_path + '/img'
for b in range(video_tensor.shape[0]):
os.makedirs(img_path, exist_ok=True)
video = video_tensor[b]
video = (video).astype(np.uint8)
for t in range(video.shape[0]):
cv2.imwrite(f'{img_path}/{b}_{t:04d}.jpg', video[t])
if verbose:
os.system(f"ffmpeg -r {fps} -pattern_type glob -i '{img_path}/*.jpg' -c:v libx264 -y {plot_path}/{b}.mp4")
os.system(f'rm -rf {img_path}')
if trace_plot:
# trace plot
start = 15
length = 20
frame = np.zeros_like(video[0])
for i in range(start,start+length):
current = video[i] * (0.1 + (i-start)/length)
frame = np.max(np.stack((frame, current)), axis=0)
cv2.imwrite(f'{plot_path}/{b}_trace.jpg', frame)
def distance_eval_step(gt_pos, pred_pos):
meds_per_timestep = []
gt_pred_pairings = None
for t in range(pred_pos.shape[0]):
frame_gt = gt_pos[t].cpu().numpy()
frame_pred = pred_pos[t].cpu().numpy()
frame_gt = (frame_gt + 1) * 0.5
frame_pred = (frame_pred + 1) * 0.5
distances = mm.distances.norm2squared_matrix(frame_gt, frame_pred, max_d2=1)
if gt_pred_pairings is None:
frame_gt_ids = list(range(frame_gt.shape[0]))
frame_pred_ids = list(range(frame_pred.shape[0]))
gt_pred_pairings = [(frame_gt_ids[g], frame_pred_ids[p]) for g, p in zip(*mm.lap.linear_sum_assignment(distances))]
med = 0
for gt_id, pred_id in gt_pred_pairings:
curr_med = np.sqrt(((frame_gt[gt_id] - frame_pred[pred_id])**2).sum())
med += curr_med
if len(gt_pred_pairings) > 0:
meds_per_timestep.append(med / len(gt_pred_pairings))
else:
meds_per_timestep.append(np.nan)
return meds_per_timestep
def compute_plot_statistics(cfg_net, statistics_complete_slots, mseloss, set_test, evaluation_mode, i, statistics_batch, t, target, output_next, mask_next, slots_bounded, slots_closed, rawmask_hidden):
statistics_batch = store_statistics(statistics_batch,
set_test['type'],
evaluation_mode,
set_test['samples'][i],
t,
mseloss(output_next, target).item()
)
# compute slot-wise prediction error
output_slot = repeat(mask_next[:,:-1], 'b o h w -> b o 3 h w') * repeat(output_next, 'b c h w -> b o c h w', o=cfg_net.num_objects)
target_slot = repeat(mask_next[:,:-1], 'b o h w -> b o 3 h w') * repeat(target, 'b c h w -> b o c h w', o=cfg_net.num_objects)
slot_error = reduce((output_slot - target_slot)**2, 'b o c h w -> b o', 'mean')
# compute rawmask_size
rawmask_size = reduce(rawmask_hidden[:, :-1], 'b o h w-> b o', 'sum')
statistics_complete_slots = store_statistics(statistics_complete_slots,
[set_test['type']] * cfg_net.num_objects,
[evaluation_mode] * cfg_net.num_objects,
[set_test['samples'][i]] * cfg_net.num_objects,
[t] * cfg_net.num_objects,
range(cfg_net.num_objects),
slots_bounded.cpu().numpy().flatten().astype(int),
slot_error.cpu().numpy().flatten(),
rawmask_size.cpu().numpy().flatten(),
slots_closed[:, :, 1].cpu().numpy().flatten(),
slots_closed[:, :, 0].cpu().numpy().flatten(),
extend = True)
return statistics_complete_slots,statistics_batch
def get_evaluation_sets(dataset):
set = {"samples": np.arange(len(dataset), dtype=int), "type": "test"}
evaluation_modes = ['open', 'vidpred_auto', 'vidpred_black_1', 'vidpred_black_2', 'vidpred_black_3', 'vidpred_black_4', 'vidpred_black_5'] # use 'open' for no blackouts
set_test_array = [set]
return set_test_array, evaluation_modes
|