1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
|
import os
import torch as th
from torch import nn
from torch.utils.data import DataLoader
import numpy as np
from einops import rearrange, repeat, reduce
from scripts.evaluation_bb import distance_eval_step
from scripts.evaluation_clevrer import compute_statistics_summary
from scripts.utils.configuration import Configuration
from model.loci import Loci
import time
import lpips
from skimage.metrics import structural_similarity as ssimloss
from skimage.metrics import peak_signal_noise_ratio as psnrloss
from scripts.utils.eval_metrics import masks_to_boxes, postproc_mask, pred_eval_step
from scripts.utils.eval_utils import append_statistics, compute_position_from_mask
from scripts.utils.plot_utils import plot_timestep
def validation_adept(valloader: DataLoader, net: Loci, cfg: Configuration, device, writer, epoch, root_path):
# memory
mseloss = nn.MSELoss()
loss_next = 0
start_time = time.time()
cfg_net = cfg.model
num_steps = 0
plot_path = os.path.join(root_path, 'plots', f'epoch_{epoch}')
with th.no_grad():
for i, input in enumerate(valloader):
# get input frame and target frame
tensor = input[0].float().to(device)
background_fix = input[1].to(device)
# apply skip frames
tensor = tensor[:,range(0, tensor.shape[1], cfg.defaults.skip_frames)]
sequence_len = tensor.shape[1]
# initial frame
input = tensor[:,0]
target = th.clip(tensor[:,0], 0, 1)
error_last = None
# placehodlers
mask_cur = None
mask_last = None
rawmask_last = None
position_last = None
gestalt_last = None
priority_last = None
gt_positions_target = None
slots_occlusionfactor = None
# loop through frames
for t_index,t in enumerate(range(-cfg.defaults.teacher_forcing, sequence_len-1)):
# move to next frame
t_run = max(t, 0)
input = tensor[:,t_run]
target = th.clip(tensor[:,t_run+1], 0, 1)
# obtain prediction
(
output_next,
position_next,
gestalt_next,
priority_next,
mask_next,
rawmask_next,
object_next,
background,
slots_occlusionfactor,
output_cur,
position_cur,
gestalt_cur,
priority_cur,
mask_cur,
rawmask_cur,
object_cur,
position_encoder_cur,
slots_bounded,
slots_partially_occluded_cur,
slots_occluded_cur,
slots_partially_occluded_next,
slots_occluded_next,
slots_closed,
output_hidden,
largest_object,
rawmask_hidden,
object_hidden
) = net(
input,
error_last,
mask_last,
rawmask_last,
position_last,
gestalt_last,
priority_last,
background_fix,
slots_occlusionfactor,
reset = (t == -cfg.defaults.teacher_forcing),
evaluate=True,
warmup = (t < 0),
shuffleslots = False,
reset_mask = (t <= 0),
allow_spawn = True,
show_hidden = False,
clean_slots = (t <= 0),
)
# 1. Track error
if t >= 0:
loss = mseloss(output_next, target)
loss_next += loss.item()
num_steps += 1
# 2. Remember output
mask_last = mask_next.clone()
rawmask_last = rawmask_next.clone()
position_last = position_next.clone()
gestalt_last = gestalt_next.clone()
priority_last = priority_next.clone()
# 3. Error for next frame
# background error
bg_error_cur = th.sqrt(reduce((input - background)**2, 'b c h w -> b 1 h w', 'mean')).detach()
bg_error_next = th.sqrt(reduce((target - background)**2, 'b c h w -> b 1 h w', 'mean')).detach()
# prediction error
error_next = th.sqrt(reduce((target - output_next)**2, 'b c h w -> b 1 h w', 'mean')).detach()
error_next = th.sqrt(error_next) * bg_error_next
error_last = error_next.clone()
# PLotting
if (i == 0) and (t_index % 2 == 0) and (epoch % 3 == 0):
os.makedirs(os.path.join(plot_path, 'object'), exist_ok=True)
openings = net.get_openings()
img_tensor = plot_timestep(cfg, cfg_net, input, target, mask_cur, mask_next, output_next, position_encoder_cur, position_next, rawmask_hidden, rawmask_cur, rawmask_next, largest_object, object_cur, object_next, object_hidden, slots_bounded, slots_partially_occluded_cur, slots_occluded_cur, slots_partially_occluded_next, slots_occluded_next, slots_closed, None, None, error_next, None, True, False, None, None, sequence_len, root_path, plot_path, t_index, t, i, openings=openings)
print(f"Validation loss: {loss_next / num_steps:.2e}, Time: {time.time() - start_time}")
writer.add_scalar('Val/Prediction Loss', loss_next / num_steps, epoch)
pass
def validation_clevrer(valloader: DataLoader, net: Loci, cfg: Configuration, device, writer, epoch, root_path):
# memory
mseloss = nn.MSELoss()
lpipsloss = lpips.LPIPS(net='vgg').to(device)
avgloss_mse = 0
avgloss_lpips = 0
avgloss_psnr = 0
avgloss_ssim = 0
start_time = time.time()
burn_in_length = 6
rollout_length = 42
plot_path = os.path.join(root_path, 'plots', f'epoch_{epoch}')
os.makedirs(os.path.join(plot_path, 'object'), exist_ok=True)
with th.no_grad():
for i, input in enumerate(valloader):
# get input frame and target frame
tensor = input[0].float().to(device)
background_fix = input[1].to(device)
# apply skip frames
tensor = tensor[:,range(0, tensor.shape[1], cfg.defaults.skip_frames)]
sequence_len = tensor.shape[1]
# initial frame
input = tensor[:,0]
target = th.clip(tensor[:,0], 0, 1)
error_last = None
# placehodlers
mask_cur = None
mask_last = None
rawmask_last = None
position_last = None
gestalt_last = None
priority_last = None
gt_positions_target = None
slots_occlusionfactor = None
# loop through frames
for t_index,t in enumerate(range(-cfg.defaults.teacher_forcing, min(burn_in_length + rollout_length-1, sequence_len-1))):
# move to next frame
t_run = max(t, 0)
input = tensor[:,t_run]
target = th.clip(tensor[:,t_run+1], 0, 1)
if t_run >= burn_in_length:
blackout = th.tensor((np.random.rand(valloader.batch_size) < 0.2)[:,None,None,None]).float().to(device)
input = blackout * (input * 0) + (1-blackout) * input
error_last = blackout * (error_last * 0) + (1-blackout) * error_last
# obtain prediction
(
output_next,
position_next,
gestalt_next,
priority_next,
mask_next,
rawmask_next,
object_next,
background,
slots_occlusionfactor,
output_cur,
position_cur,
gestalt_cur,
priority_cur,
mask_cur,
rawmask_cur,
object_cur,
position_encoder_cur,
slots_bounded,
slots_partially_occluded_cur,
slots_occluded_cur,
slots_partially_occluded_next,
slots_occluded_next,
slots_closed,
output_hidden,
largest_object,
rawmask_hidden,
object_hidden
) = net(
input,
error_last,
mask_last,
rawmask_last,
position_last,
gestalt_last,
priority_last,
background_fix,
slots_occlusionfactor,
reset = (t == -cfg.defaults.teacher_forcing),
evaluate=True,
warmup = (t < 0),
shuffleslots = False,
reset_mask = (t <= 0),
allow_spawn = True,
show_hidden = False,
clean_slots = (t <= 0),
)
# 1. Track error
if t >= 0:
loss_mse = mseloss(output_next, target)
loss_ssim = np.sum([ssimloss(output_next[i].cpu().numpy(), target[i].cpu().numpy(), channel_axis=0,gaussian_weights=True,sigma=1.5,use_sample_covariance=False,data_range=1) for i in range(output_next.shape[0])]),
loss_psnr = np.sum([psnrloss(output_next[i].cpu().numpy(), target[i].cpu().numpy(), data_range=1) for i in range(output_next.shape[0])]),
loss_lpips = th.sum(lpipsloss(output_next*2-1, target*2-1))
avgloss_mse += loss_mse.item()
avgloss_ssim += loss_ssim[0].item()
avgloss_psnr += loss_psnr[0].item()
avgloss_lpips += loss_lpips.item()
# 2. Remember output
mask_last = mask_next.clone()
rawmask_last = rawmask_next.clone()
position_last = position_next.clone()
gestalt_last = gestalt_next.clone()
priority_last = priority_next.clone()
# 3. Error for next frame
# background error
bg_error_next = th.sqrt(reduce((target - background)**2, 'b c h w -> b 1 h w', 'mean')).detach()
# prediction error
error_next = th.sqrt(reduce((target - output_next)**2, 'b c h w -> b 1 h w', 'mean')).detach()
error_next = th.sqrt(error_next) * bg_error_next
error_last = error_next.clone()
# PLotting
if i == 0:
openings = net.get_openings()
img_tensor = plot_timestep(cfg, cfg.model, input, target, mask_cur, mask_next, output_next, position_encoder_cur, position_next, rawmask_hidden, rawmask_cur, rawmask_next, largest_object, object_cur, object_next, object_hidden, slots_bounded, slots_partially_occluded_cur, slots_occluded_cur, slots_partially_occluded_next, slots_occluded_next, slots_closed, None, None, error_next, None, True, False, None, None, sequence_len, root_path, plot_path, t_index, t, i, openings=openings)
print(f"MSE loss: {avgloss_mse / len(valloader.dataset):.2e}, LPIPS loss: {avgloss_lpips / len(valloader.dataset):.2e}, PSNR loss: {avgloss_psnr / len(valloader.dataset):.2e}, SSIM loss: {avgloss_ssim / len(valloader.dataset):.2e}, Time: {time.time() - start_time}")
writer.add_scalar('Val/Prediction Loss', avgloss_mse / len(valloader.dataset), epoch)
writer.add_scalar('Val/LPIPS Loss', avgloss_lpips / len(valloader.dataset), epoch)
writer.add_scalar('Val/PSNR Loss', avgloss_psnr / len(valloader.dataset), epoch)
writer.add_scalar('Val/SSIM Loss', avgloss_ssim / len(valloader.dataset), epoch)
pass
def validation_bb(valloader: DataLoader, net: Loci, cfg: Configuration, device, writer, epoch, root_path):
# memory
start_time = time.time()
net.eval()
evaluation_mode = 'vidpred_black'
use_meds = True
# Evaluation Specifics
burn_in_length = 10
rollout_length = 20
rollout_length_stats = 10 # only consider the first 10 frames for statistics
target_size = (64, 64)
# Losses
lpipsloss = lpips.LPIPS(net='vgg').to(device)
mseloss = nn.MSELoss()
metric_complete = {'mse': [], 'ssim': [], 'psnr': [], 'percept_dist': [], 'ari': [], 'fari': [], 'miou': [], 'ap': [], 'ar': [], 'meds': [], 'ari_hidden': [], 'fari_hidden': [], 'miou_hidden': []}
loss_next = 0.0
loss_cur = 0.0
num_steps = 0
plot_path = os.path.join(root_path, 'plots', f'epoch_{epoch}')
os.makedirs(os.path.join(plot_path, 'object'), exist_ok=True)
with th.no_grad():
for i, input in enumerate(valloader):
# Load data
tensor = input[0].float().to(device)
background_fix = input[1].to(device)
gt_pos = input[2].to(device)
gt_mask = input[3].to(device)
gt_pres_mask = input[4].to(device)
gt_hidden_mask = input[5].to(device)
sequence_len = tensor.shape[1]
# placehodlers
mask_cur = None
mask_last = None
rawmask_last = None
position_last = None
gestalt_last = None
priority_last = None
gt_positions_target = None
slots_occlusionfactor = None
error_last = None
# Memory
cfg_net = cfg.model
num_objects_bb = gt_pos.shape[2]
pred_pos_batch = th.zeros((cfg_net.batch_size, rollout_length, num_objects_bb, 2)).to(device)
gt_pos_batch = th.zeros((cfg_net.batch_size, rollout_length, num_objects_bb, 2)).to(device)
pred_img_batch = th.zeros((cfg_net.batch_size, rollout_length, 3, target_size[0], target_size[1])).to(device)
gt_img_batch = th.zeros((cfg_net.batch_size, rollout_length, 3, target_size[0], target_size[1])).to(device)
pred_mask_batch = th.zeros((cfg_net.batch_size, rollout_length, target_size[0], target_size[1])).to(device)
pred_hidden_mask_batch = th.zeros((cfg_net.batch_size, rollout_length, target_size[0], target_size[1])).to(device)
# Counters
num_rollout = 0
num_burnin = 0
# loop through frames
for t_index,t in enumerate(range(-cfg.defaults.teacher_forcing, burn_in_length+rollout_length)):
# Move to next frame
t_run = max(t, 0)
input = tensor[:,t_run]
target_cur = tensor[:,t_run]
target = th.clip(tensor[:,t_run+1], 0, 1)
gt_pos_t = gt_pos[:,t_run+1]/32-1
gt_pos_t = th.concat((gt_pos_t, th.ones_like(gt_pos_t[:,:,:1])), dim=2)
rollout_index = t_run - burn_in_length
rollout_active = False
if t>=0:
if rollout_index >= 0:
num_rollout += 1
if (evaluation_mode == 'vidpred_black'):
input = output_next * 0
error_last = error_last * 0
rollout_active = True
elif (evaluation_mode == 'vidpred_auto'):
input = output_next
error_last = error_last * 0
rollout_active = True
else:
num_burnin += 1
# obtain prediction
(
output_next,
position_next,
gestalt_next,
priority_next,
mask_next,
rawmask_next,
object_next,
background,
slots_occlusionfactor,
output_cur,
position_cur,
gestalt_cur,
priority_cur,
mask_cur,
rawmask_cur,
object_cur,
position_encoder_cur,
slots_bounded,
slots_partially_occluded_cur,
slots_occluded_cur,
slots_partially_occluded_next,
slots_occluded_next,
slots_closed,
output_hidden,
largest_object,
rawmask_hidden,
object_hidden
) = net(
input,
error_last,
mask_last,
rawmask_last,
position_last,
gestalt_last,
priority_last,
background_fix,
slots_occlusionfactor,
reset = (t == -cfg.defaults.teacher_forcing),
evaluate=True,
warmup = (t < 0),
shuffleslots = True,
reset_mask = (t <= 0),
allow_spawn = True,
show_hidden = False,
clean_slots = False,
)
# 1. Track error
if t >= 0:
if (rollout_index >= 0):
# store positions per batch
if use_meds:
if False:
pred_pos_batch[:,rollout_index] = rearrange(position_next, 'b (o c) -> b o c', o=cfg_net.num_objects)[:,:,:2]
else:
pred_pos_batch[:,rollout_index] = compute_position_from_mask(rawmask_next)
gt_pos_batch[:,rollout_index] = gt_pos_t[:,:,:2]
pred_img_batch[:,rollout_index] = output_next
gt_img_batch[:,rollout_index] = target
# Here we compute only the foreground segmentation mask
pred_mask_batch[:,rollout_index] = postproc_mask(mask_next[:,None,:,None])[:, 0]
# Here we compute the hidden segmentation
occluded_cur = th.clip(rawmask_next - mask_next, 0, 1)[:,:-1]
occluded_sum_cur = 1-(reduce(occluded_cur, 'b c h w -> b h w', 'max') > 0.5).float()
occluded_cur = th.cat((occluded_cur, occluded_sum_cur[:,None]), dim=1)
pred_hidden_mask_batch[:,rollout_index] = postproc_mask(occluded_cur[:,None,:,None])[:, 0]
# 2. Remember output
mask_last = mask_next.clone()
rawmask_last = rawmask_next.clone()
position_last = position_next.clone()
gestalt_last = gestalt_next.clone()
priority_last = priority_next.clone()
# 3. Error for next frame
# background error
bg_error_cur = th.sqrt(reduce((input - background)**2, 'b c h w -> b 1 h w', 'mean')).detach()
bg_error_next = th.sqrt(reduce((target - background)**2, 'b c h w -> b 1 h w', 'mean')).detach()
# prediction error
error_next = th.sqrt(reduce((target - output_next)**2, 'b c h w -> b 1 h w', 'mean')).detach()
error_next = th.sqrt(error_next) * bg_error_next
error_last = error_next.clone()
# Prediction and encoder Loss
loss_next += mseloss(output_next * bg_error_next, target * bg_error_next)
loss_cur += mseloss(output_cur * bg_error_cur, input * bg_error_cur)
num_steps += 1
# PLotting
if i == 0:
openings = net.get_openings()
img_tensor = plot_timestep(cfg, cfg_net, input, target_cur, mask_cur, mask_next, output_next, position_encoder_cur, position_next, rawmask_hidden, rawmask_cur, rawmask_next, largest_object, object_cur, object_next, object_hidden, slots_bounded, slots_partially_occluded_cur, slots_occluded_cur, slots_partially_occluded_next, slots_occluded_next, slots_closed, gt_pos_t, None, error_next, None, True, False, None, None, sequence_len, root_path, plot_path, t_index, t, i, rollout_mode=rollout_active, openings=openings)
for b in range(cfg_net.batch_size):
# perceptual similarity from slotformer paper
metric_dict = pred_eval_step(
gt = gt_img_batch[b:b+1],
pred = pred_img_batch[b:b+1],
pred_mask = pred_mask_batch.long()[b:b+1],
pred_mask_hidden = pred_hidden_mask_batch.long()[b:b+1],
pred_bbox = None,
gt_mask = gt_mask.long()[b:b+1, burn_in_length+1:burn_in_length+rollout_length+1],
gt_mask_hidden = gt_hidden_mask.long()[b:b+1, burn_in_length+1:burn_in_length+rollout_length+1],
gt_pres_mask = gt_pres_mask[b:b+1, burn_in_length+1:burn_in_length+rollout_length+1],
gt_bbox = None,
lpips_fn = lpipsloss,
eval_traj = True,
)
metric_dict['meds'] = distance_eval_step(gt_pos_batch[b], pred_pos_batch[b])
metric_complete = append_statistics(metric_dict, metric_complete)
# sanity check
if (num_rollout != rollout_length) and (num_burnin != burn_in_length):
raise ValueError('Number of rollout steps and burnin steps must be equal to the sequence length.')
dic = compute_statistics_summary(metric_complete, evaluation_mode, consider_first_n_frames=rollout_length_stats)
writer.add_scalar('Val/Meds', dic['meds_complete_sum'], epoch)
writer.add_scalar('Val/ARI_hidden', dic['ari_hidden_complete_average'], epoch)
writer.add_scalar('Val/ARI', dic['ari_complete_average'], epoch)
writer.add_scalar('Val/LPIPS', dic['percept_dist_complete_average'], epoch)
writer.add_scalar('Val/Prediction Loss', loss_next / num_steps, epoch)
writer.add_scalar('Val/Encoding Loss', loss_cur / num_steps, epoch)
net.train()
pass
|