// MIT License, Copyright (c) 2020 Marvin Borner #include #include #include #include #include #include #include #include /** * VFS */ static struct list *mount_points = NULL; char *vfs_normalize_path(const char *path) { char *fixed = strdup(path); int len = strlen(fixed); if (fixed[len - 1] == '/' && len != 1) fixed[len - 1] = '\0'; return fixed; } u32 vfs_mounted(struct device *dev, const char *path) { struct node *iterator = mount_points->head; while (iterator) { if (((struct mount_info *)iterator->data)->dev->id == dev->id || !strcmp(((struct mount_info *)iterator->data)->path, path)) return 1; iterator = iterator->next; } return 0; } struct mount_info *vfs_recursive_find(char *path) { struct node *iterator = mount_points->head; char *fixed = vfs_normalize_path(path); free(path); // Due to recursiveness while (iterator) { struct mount_info *m = iterator->data; if (!strcmp(m->path, fixed)) { free(fixed); return m; } iterator = iterator->next; } if (strlen(fixed) == 1) { free(fixed); return NULL; } *(strrchr(fixed, '/') + 1) = '\0'; return vfs_recursive_find(fixed); } struct mount_info *vfs_find_mount_info(const char *path) { assert(path[0] == '/'); return vfs_recursive_find(strdup(path)); } struct device *vfs_find_dev(const char *path) { assert(path[0] == '/'); struct mount_info *m = vfs_find_mount_info(path); return m && m->dev ? m->dev : NULL; } const char *vfs_resolve_type(enum vfs_type type) { switch (type) { case VFS_DEVFS: return "devfs"; case VFS_TMPFS: return "tmpfs"; case VFS_PROCFS: return "procfs"; case VFS_EXT2: return "ext2"; default: return "unknown"; } } void vfs_list_mounts() { struct node *iterator = mount_points->head; while (iterator) { struct mount_info *m = iterator->data; printf("%s on %s type %s\n", m->dev->name, m->path, vfs_resolve_type(m->dev->vfs->type)); iterator = iterator->next; } } u32 vfs_mount(struct device *dev, const char *path) { // TODO: Check if already mounted if (!dev || !dev->id || vfs_mounted(dev, path)) return 0; char *fixed = vfs_normalize_path(path); struct mount_info *m = malloc(sizeof(*m)); m->path = fixed; m->dev = dev; list_add(mount_points, m); return 1; } u32 vfs_read(const char *path, void *buf, u32 offset, u32 count) { if (count == 0 || offset > count) return 0; struct mount_info *m = vfs_find_mount_info(path); assert(m && m->dev && m->dev->vfs && m->dev->vfs->read); u32 len = strlen(m->path); if (len > 1) path += len; struct device *dev = m->dev; return dev->vfs->read(path, buf, offset, count, dev); } u32 vfs_write(const char *path, void *buf, u32 offset, u32 count) { struct device *dev = vfs_find_dev(path); assert(dev && dev->vfs && dev->vfs->write); return dev->vfs->write(path, buf, offset, count, dev); } u32 vfs_stat(const char *path, struct stat *buf) { struct device *dev = vfs_find_dev(path); assert(dev && dev->vfs && dev->vfs->stat); return dev->vfs->stat(path, buf, dev); } void vfs_install(void) { mount_points = list_new(); } /** * Device */ static struct list *devices = NULL; void device_add(struct device *dev) { dev->id = rand() + 1; list_add(devices, dev); } struct device *device_get(u32 id) { struct node *iterator = devices->head; while (iterator) { if (((struct device *)iterator->data)->id == id) return iterator->data; iterator = iterator->next; } return NULL; } u32 devfs_read(const char *path, void *buf, u32 offset, u32 count, struct device *dev) { assert(dev && dev->read); printf("%s - off: %d, cnt: %d, buf: %x, dev %x\n", path, offset, count, buf, dev); return dev->read(buf, offset, count, dev); } void device_install(void) { devices = list_new(); struct vfs *vfs = malloc(sizeof(*vfs)); vfs->type = VFS_DEVFS; vfs->read = devfs_read; struct device *dev = malloc(sizeof(*dev)); dev->name = "dev"; dev->type = DEV_CHAR; dev->vfs = vfs; device_add(dev); vfs_mount(dev, "/dev/"); /* vfs_list_mounts(); */ } /** * EXT2 */ void *buffer_read(u32 block, struct device *dev) { void *buf = malloc(BLOCK_SIZE); dev->read(buf, block * SECTOR_COUNT, SECTOR_COUNT, dev); return buf; } struct ext2_superblock *get_superblock(struct device *dev) { struct ext2_superblock *sb = buffer_read(EXT2_SUPER, dev); if (sb->magic != EXT2_MAGIC) return NULL; return sb; } struct ext2_bgd *get_bgd(struct device *dev) { return buffer_read(EXT2_SUPER + 1, dev); } struct ext2_inode *get_inode(u32 i, struct device *dev) { struct ext2_superblock *s = get_superblock(dev); assert(s); struct ext2_bgd *b = get_bgd(dev); assert(b); u32 block_group = (i - 1) / s->inodes_per_group; u32 index = (i - 1) % s->inodes_per_group; u32 block = (index * EXT2_INODE_SIZE) / BLOCK_SIZE; b += block_group; u32 *data = buffer_read(b->inode_table + block, dev); struct ext2_inode *in = (struct ext2_inode *)((u32)data + (index % (BLOCK_SIZE / EXT2_INODE_SIZE)) * EXT2_INODE_SIZE); return in; } u32 read_indirect(u32 indirect, u32 block_num, struct device *dev) { char *data = buffer_read(indirect, dev); return *(u32 *)((u32)data + block_num * sizeof(u32)); } u32 read_inode(struct ext2_inode *in, void *buf, u32 offset, u32 count, struct device *dev) { // TODO: Support read offset (void)offset; if (!in || !buf) return 0; u32 num_blocks = in->blocks / (BLOCK_SIZE / SECTOR_SIZE); if (!num_blocks) return 0; // TODO: memcpy block chunks until count is copied while (BLOCK_SIZE * num_blocks > count) num_blocks--; u32 indirect = 0; u32 blocknum = 0; char *data = 0; // TODO: Support triply indirect pointers // TODO: This can be heavily optimized by saving the indirect block lists for (u32 i = 0; i < num_blocks; i++) { if (i < 12) { blocknum = in->block[i]; data = buffer_read(blocknum, dev); memcpy((u32 *)((u32)buf + i * BLOCK_SIZE), data, BLOCK_SIZE); } else if (i < BLOCK_COUNT + 12) { indirect = in->block[12]; blocknum = read_indirect(indirect, i - 12, dev); data = buffer_read(blocknum, dev); memcpy((u32 *)((u32)buf + i * BLOCK_SIZE), data, BLOCK_SIZE); } else { indirect = in->block[13]; blocknum = read_indirect(indirect, (i - (BLOCK_COUNT + 12)) / BLOCK_COUNT, dev); blocknum = read_indirect(blocknum, (i - (BLOCK_COUNT + 12)) % BLOCK_COUNT, dev); data = buffer_read(blocknum, dev); memcpy((u32 *)((u32)buf + i * BLOCK_SIZE), data, BLOCK_SIZE); } /* printf("Loaded %d of %d\n", i + 1, num_blocks); */ } return count; } u32 find_inode(const char *name, u32 dir_inode, struct device *dev) { if (!dir_inode) return (unsigned)-1; struct ext2_inode *i = get_inode(dir_inode, dev); char *buf = malloc(BLOCK_SIZE * i->blocks / 2); memset(buf, 0, BLOCK_SIZE * i->blocks / 2); for (u32 q = 0; q < i->blocks / 2; q++) { char *data = buffer_read(i->block[q], dev); memcpy((u32 *)((u32)buf + q * BLOCK_SIZE), data, BLOCK_SIZE); } struct ext2_dirent *d = (struct ext2_dirent *)buf; u32 sum = 0; do { // Calculate the 4byte aligned size of each entry sum += d->total_len; if (strlen(name) == d->name_len && strncmp((void *)d->name, name, d->name_len) == 0) { free(buf); return d->inode_num; } d = (struct ext2_dirent *)((u32)d + d->total_len); } while (sum < (1024 * i->blocks / 2)); free(buf); return (unsigned)-1; } struct ext2_inode *find_inode_by_path(const char *path, struct device *dev) { if (path[0] != '/') return 0; char *path_cp = strdup(path); char *init = path_cp; // For freeing path_cp++; u32 current_inode = EXT2_ROOT; int i = 0; while (1) { for (i = 0; path_cp[i] != '/' && path_cp[i] != '\0'; i++) ; if (path_cp[i] == '\0') break; path_cp[i] = '\0'; current_inode = find_inode(path_cp, current_inode, dev); path_cp[i] = '/'; if (current_inode == 0) { free(init); return 0; } path_cp += i + 1; } u32 inode = find_inode(path_cp, current_inode, dev); free(init); if ((signed)inode <= 0) return 0; return get_inode(inode, dev); } u32 ext2_read(const char *path, void *buf, u32 offset, u32 count, struct device *dev) { struct ext2_inode *in = find_inode_by_path(path, dev); if (in) return read_inode(in, buf, offset, count, dev); else return 0; } u32 ext2_stat(const char *path, struct stat *buf, struct device *dev) { if (!buf) return 1; struct ext2_inode *in = find_inode_by_path(path, dev); if (!in) return 1; u32 num_blocks = in->blocks / (BLOCK_SIZE / SECTOR_SIZE); u32 sz = BLOCK_SIZE * num_blocks; buf->dev_id = dev->id; buf->size = sz; // Actually in->size but ext2.. return 0; }