// MIT License, Copyright (c) 2020 Marvin Borner #include #include #include #include #include #include #include #include #include #include #include /** * VFS */ PROTECTED static struct list *mount_points = NULL; static char *vfs_normalize_path(const char *path) { char *fixed = strdup(path); int len = strlen(fixed); if (fixed[len - 1] == '/' && len != 1) fixed[len - 1] = '\0'; return fixed; } u8 vfs_mounted(struct device *dev, const char *path) { struct node *iterator = mount_points->head; while (iterator) { if (((struct mount_info *)iterator->data)->dev->id == dev->id || !strcmp(((struct mount_info *)iterator->data)->path, path)) return 1; iterator = iterator->next; } return 0; } static struct mount_info *vfs_recursive_find(char *path) { struct node *iterator = mount_points->head; char *fixed = vfs_normalize_path(path); free(path); // Due to recursiveness while (iterator) { struct mount_info *m = iterator->data; if (!strcmp(m->path, fixed)) { free(fixed); return m; } iterator = iterator->next; } if (strlen(fixed) == 1) { free(fixed); return NULL; } *(strrchr(fixed, '/') + 1) = '\0'; return vfs_recursive_find(fixed); } static struct mount_info *vfs_find_mount_info(const char *path) { if (path[0] != '/') return NULL; return vfs_recursive_find(strdup(path)); } struct device *vfs_find_dev(const char *path) { if (path[0] != '/') return NULL; struct mount_info *m = vfs_find_mount_info(path); if (m->dev->vfs->type == VFS_DEVFS) // TODO: ? return device_get_by_name(path + strlen(m->path) + 1); return m && m->dev ? m->dev : NULL; } /*static const char *vfs_resolve_type(enum vfs_type type) { switch (type) { case VFS_DEVFS: return "devfs"; case VFS_TMPFS: return "tmpfs"; case VFS_PROCFS: return "procfs"; case VFS_EXT2: return "ext2"; default: return "unknown"; } } static void vfs_list_mounts() { struct node *iterator = mount_points->head; while (iterator) { struct mount_info *m = iterator->data; printf("%s on %s type %s\n", m->dev->name, m->path, vfs_resolve_type(m->dev->vfs->type)); iterator = iterator->next; } }*/ res vfs_mount(struct device *dev, const char *path) { if (!memory_valid(path)) return -EFAULT; if (!memory_valid(dev) || !dev->id) return -EFAULT; if (vfs_mounted(dev, path)) return -EBUSY; char *fixed = vfs_normalize_path(path); struct mount_info *m = malloc(sizeof(*m)); m->path = fixed; m->dev = dev; list_add(mount_points, m); return EOK; } res vfs_read(const char *path, void *buf, u32 offset, u32 count) { /* printf("%s READ: %s\n", proc_current() ? proc_current()->name : "Unknown", path); */ if (!memory_valid(path)) return -EFAULT; if (!memory_valid(buf)) return -EFAULT; struct mount_info *m = vfs_find_mount_info(path); if (!m || !m->dev || !m->dev->vfs) return -ENOENT; if (!m->dev->vfs->read || !m->dev->vfs->perm) return -EINVAL; u32 len = strlen(m->path); if (len > 1) path += len; if (m->dev->vfs->perm(path, VFS_READ, m->dev) != EOK && !proc_super()) return -EACCES; if (!count) return EOK; return m->dev->vfs->read(path, buf, offset, count, m->dev); } res vfs_write(const char *path, void *buf, u32 offset, u32 count) { /* printf("%s WRITE: %s\n", proc_current() ? proc_current()->name : "Unknown", path); */ if (!memory_valid(path)) return -EFAULT; if (!memory_valid(buf)) return -EFAULT; struct mount_info *m = vfs_find_mount_info(path); if (!m || !m->dev || !m->dev->vfs) return -ENOENT; if (!m->dev->vfs->write || !m->dev->vfs->perm) return -EINVAL; u32 len = strlen(m->path); if (len > 1) path += len; if (m->dev->vfs->perm(path, VFS_WRITE, m->dev) != EOK && !proc_super()) return -EACCES; if (!count) return EOK; return m->dev->vfs->write(path, buf, offset, count, m->dev); } res vfs_ioctl(const char *path, u32 request, void *arg1, void *arg2, void *arg3) { if (!memory_valid(path)) return -EFAULT; struct mount_info *m = vfs_find_mount_info(path); if (!m || !m->dev || !m->dev->vfs) return -ENOENT; if (!m->dev->vfs->ioctl || !m->dev->vfs->perm) return -EINVAL; u32 len = strlen(m->path); if (len > 1) path += len; if (m->dev->vfs->perm(path, VFS_WRITE, m->dev) != EOK && !proc_super()) return -EACCES; return m->dev->vfs->ioctl(path, request, arg1, arg2, arg3, m->dev); } res vfs_stat(const char *path, struct stat *buf) { if (!memory_valid(path)) return -EFAULT; if (!memory_valid(buf)) return -EFAULT; struct mount_info *m = vfs_find_mount_info(path); if (!m || !m->dev || !m->dev->vfs) return -ENOENT; if (!m->dev->vfs->stat || !m->dev->vfs->perm) return -EINVAL; u32 len = strlen(m->path); if (len > 1) path += len; if (m->dev->vfs->perm(path, VFS_READ, m->dev) != EOK && !proc_super()) return -EACCES; return m->dev->vfs->stat(path, buf, m->dev); } res vfs_block(const char *path, u32 func_ptr) { if (!func_ptr || !memory_valid(path)) return -EFAULT; struct mount_info *m = vfs_find_mount_info(path); if (!m || !m->dev || !m->dev->vfs) return -ENOENT; // Default block if (!m->dev->vfs->block) { proc_block(vfs_find_dev(path)->id, PROC_BLOCK_DEV, func_ptr); return EOK; } u32 len = strlen(m->path); if (len > 1) path += len; return m->dev->vfs->block(path, func_ptr, m->dev); } res vfs_poll(const char **files) { if (!memory_valid(files)) return -EFAULT; for (const char **p = files; *p && memory_valid(*p) && **p; p++) { res ready = vfs_ready(*p); if (ready == 1) return p - files; else if (ready < 0) return ready; } for (const char **p = files; *p && memory_valid(*p) && **p; p++) vfs_block(*p, (u32)vfs_poll); return PROC_MAX_BLOCK_IDS + 1; } res vfs_ready(const char *path) { if (!memory_valid(path)) return -EFAULT; struct mount_info *m = vfs_find_mount_info(path); if (!m || !m->dev || !m->dev->vfs) return -ENOENT; if (!m->dev->vfs->ready) return -EINVAL; u32 len = strlen(m->path); if (len > 1) path += len; return m->dev->vfs->ready(path, m->dev); } CLEAR void vfs_install(void) { mount_points = list_new(); } /** * Device */ PROTECTED static struct list *devices = NULL; CLEAR void device_add(struct device *dev) { dev->id = rand() + 1; list_add(devices, dev); } struct device *device_get_by_id(u32 id) { struct node *iterator = devices->head; while (iterator) { if (((struct device *)iterator->data)->id == id) return iterator->data; iterator = iterator->next; } return NULL; } struct device *device_get_by_name(const char *name) { struct node *iterator = devices->head; while (iterator) { if (!strcmp(((struct device *)iterator->data)->name, name)) return iterator->data; iterator = iterator->next; } return NULL; } static res devfs_read(const char *path, void *buf, u32 offset, u32 count, struct device *dev) { struct device *target = device_get_by_name(path + 1); if (!target) return -ENOENT; if (!target->read) return -EINVAL; return target->read(buf, offset, count, dev); } static res devfs_ioctl(const char *path, u32 request, void *arg1, void *arg2, void *arg3, struct device *dev) { struct device *target = device_get_by_name(path + 1); if (!target) return -ENOENT; if (!target->ioctl) return -EINVAL; return target->ioctl(request, arg1, arg2, arg3, dev); } static res devfs_perm(const char *path, enum vfs_perm perm, struct device *dev) { UNUSED(path); UNUSED(perm); UNUSED(dev); return EOK; } static res devfs_ready(const char *path, struct device *dev) { UNUSED(dev); struct device *target = device_get_by_name(path + 1); if (!target) return -ENOENT; if (!target->ready) return -EINVAL; return target->ready(); } CLEAR void device_install(void) { devices = list_new(); struct vfs *vfs = zalloc(sizeof(*vfs)); vfs->type = VFS_DEVFS; vfs->read = devfs_read; vfs->ioctl = devfs_ioctl; vfs->perm = devfs_perm; vfs->ready = devfs_ready; struct device *dev = zalloc(sizeof(*dev)); dev->name = "dev"; dev->type = DEV_CHAR; dev->vfs = vfs; device_add(dev); vfs_mount(dev, "/dev/"); /* vfs_list_mounts(); */ } /** * EXT2 */ // TODO: Remove malloc from buffer_read (attempt in #56cd63f199) static void *buffer_read(u32 block, struct device *dev) { void *buf = zalloc(BLOCK_SIZE); dev->read(buf, block * SECTOR_COUNT, SECTOR_COUNT, dev); return buf; } static struct ext2_superblock *get_superblock(struct device *dev) { struct ext2_superblock *sb = buffer_read(EXT2_SUPER, dev); assert(sb->magic == EXT2_MAGIC); return sb; } static struct ext2_bgd *get_bgd(struct device *dev) { return buffer_read(EXT2_SUPER + 1, dev); } static struct ext2_inode *get_inode(u32 i, struct ext2_inode *in_buf, struct device *dev) { struct ext2_superblock *s = get_superblock(dev); assert(s); struct ext2_bgd *b = get_bgd(dev); assert(b); u32 block_group = (i - 1) / s->inodes_per_group; u32 index = (i - 1) % s->inodes_per_group; u32 block = (index * EXT2_INODE_SIZE) / BLOCK_SIZE; b += block_group; u32 *buf = buffer_read(b->inode_table + block, dev); struct ext2_inode *in = (struct ext2_inode *)((u32)buf + (index % (BLOCK_SIZE / EXT2_INODE_SIZE)) * EXT2_INODE_SIZE); memcpy(in_buf, in, sizeof(*in_buf)); free(buf); free(s); free(b - block_group); return in_buf; } struct indirect_cache { u32 block; u8 data[BLOCK_SIZE]; }; static struct list *indirect_cache = NULL; static u32 read_indirect(u32 indirect, u32 block_num, struct device *dev) { void *data = NULL; if (indirect_cache) { struct node *iterator = indirect_cache->head; while (iterator) { struct indirect_cache *cache = iterator->data; if (cache->block == indirect) data = cache->data; iterator = iterator->next; } } else { indirect_cache = list_new(); } if (!data) { data = buffer_read(indirect, dev); struct indirect_cache *cache = malloc(sizeof(*cache)); cache->block = indirect; memcpy(cache->data, data, BLOCK_SIZE); list_add(indirect_cache, cache); u32 ind = *(u32 *)((u32)data + block_num * sizeof(u32)); free(data); return ind; } u32 ind = *(u32 *)((u32)data + block_num * sizeof(u32)); return ind; } static res read_inode(struct ext2_inode *in, void *buf, u32 offset, u32 count, struct device *dev) { if (!in || !buf) return -EINVAL; if (in->size == 0) return EOK; u32 num_blocks = in->blocks / (BLOCK_SIZE / SECTOR_SIZE) + 1; if (!num_blocks) return -EINVAL; u32 first_block = offset / BLOCK_SIZE; u32 last_block = (offset + count) / BLOCK_SIZE; if (last_block >= num_blocks) last_block = num_blocks - 1; u32 first_block_offset = offset % BLOCK_SIZE; u32 remaining = MIN(count, in->size - offset); u32 copied = 0; u32 indirect = 0; u32 blocknum = 0; // TODO: Support triply indirect pointers for (u32 i = first_block; i <= last_block; i++) { if (i < 12) { blocknum = in->block[i]; } else if (i < BLOCK_COUNT + 12) { indirect = in->block[12]; blocknum = read_indirect(indirect, i - 12, dev); } else { indirect = in->block[13]; blocknum = read_indirect(indirect, (i - (BLOCK_COUNT + 12)) / BLOCK_COUNT, dev); blocknum = read_indirect(blocknum, (i - (BLOCK_COUNT + 12)) % BLOCK_COUNT, dev); } char *data = buffer_read(blocknum, dev); u32 block_offset = (i == first_block) ? first_block_offset : 0; u32 byte_count = MIN(BLOCK_SIZE - block_offset, remaining); memcpy((u8 *)buf + copied, data + block_offset, byte_count); copied += byte_count; remaining -= byte_count; free(data); /* printf("Loaded %d of %d\n", i + 1, last_block); */ } if (indirect_cache) { struct node *iterator = indirect_cache->head; while (iterator) { struct indirect_cache *cache = iterator->data; free(cache); iterator = iterator->next; } list_destroy(indirect_cache); indirect_cache = NULL; } return copied; } static u32 find_inode(const char *name, u32 dir_inode, struct device *dev) { if (!dir_inode) return (unsigned)-1; struct ext2_inode i = { 0 }; get_inode(dir_inode, &i, dev); char *buf = malloc(BLOCK_SIZE * i.blocks / 2); memset(buf, 0, BLOCK_SIZE * i.blocks / 2); for (u32 q = 0; q < i.blocks / 2; q++) { char *data = buffer_read(i.block[q], dev); memcpy((u32 *)((u32)buf + q * BLOCK_SIZE), data, BLOCK_SIZE); free(data); } struct ext2_dirent *d = (struct ext2_dirent *)buf; u32 sum = 0; do { // Calculate the 4byte aligned size of each entry sum += d->total_len; if (strlen(name) == d->name_len && strncmp((void *)d->name, name, d->name_len) == 0) { free(buf); return d->inode_num; } d = (struct ext2_dirent *)((u32)d + d->total_len); } while (sum < (1024 * i.blocks / 2)); free(buf); return (unsigned)-1; } static struct ext2_inode *find_inode_by_path(const char *path, struct ext2_inode *in_buf, struct device *dev) { if (path[0] != '/') return NULL; char *path_cp = strdup(path); char *init = path_cp; // For freeing path_cp++; u32 current_inode = EXT2_ROOT; u32 i = 0; while (1) { for (i = 0; path_cp[i] != '/' && path_cp[i] != '\0'; i++) ; if (path_cp[i] == '\0') break; path_cp[i] = '\0'; current_inode = find_inode(path_cp, current_inode, dev); path_cp[i] = '/'; if (current_inode == 0) { free(init); return NULL; } path_cp += i + 1; } u32 inode = find_inode(path_cp, current_inode, dev); free(init); if ((signed)inode <= 0) return NULL; return get_inode(inode, in_buf, dev); } res ext2_read(const char *path, void *buf, u32 offset, u32 count, struct device *dev) { struct ext2_inode in = { 0 }; if (find_inode_by_path(path, &in, dev) == &in) return read_inode(&in, buf, offset, count, dev); else return -ENOENT; } res ext2_stat(const char *path, struct stat *buf, struct device *dev) { struct ext2_inode in = { 0 }; if (find_inode_by_path(path, &in, dev) != &in) return -ENOENT; //u32 num_blocks = in.blocks / (BLOCK_SIZE / SECTOR_SIZE); //u32 sz = BLOCK_SIZE * num_blocks; buf->dev_id = dev->id; buf->size = in.size; return EOK; } res ext2_perm(const char *path, enum vfs_perm perm, struct device *dev) { struct ext2_inode in = { 0 }; if (find_inode_by_path(path, &in, dev) != &in) return -ENOENT; switch (perm) { case VFS_EXEC: return (in.mode & EXT2_PERM_UEXEC) != 0 ? EOK : -EACCES; case VFS_WRITE: return (in.mode & EXT2_PERM_UWRITE) != 0 ? EOK : -EACCES; case VFS_READ: return (in.mode & EXT2_PERM_UREAD) != 0 ? EOK : -EACCES; default: return -EINVAL; } } res ext2_ready(const char *path, struct device *dev) { UNUSED(path); UNUSED(dev); return 1; }