1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
// MIT License, Copyright (c) 2020 Marvin Borner
#include <cpu.h>
#include <fs.h>
#include <interrupts.h>
#include <load.h>
#include <mem.h>
#include <net.h>
#include <print.h>
#include <proc.h>
#include <str.h>
#include <sys.h>
#include <syscall.h>
#include <timer.h>
static void syscall_handler(struct regs *r)
{
enum sys num = r->eax;
r->eax = 0;
/* printf("[SYSCALL] %d from %s\n", num, proc_current()->name); */
switch (num) {
case SYS_LOOP: {
loop();
break;
}
case SYS_MALLOC: {
r->eax = (u32)malloc(r->ebx);
break;
}
case SYS_FREE: {
free((void *)r->ebx);
break;
}
case SYS_STAT: {
r->eax = (u32)vfs_stat((char *)r->ebx, (struct stat *)r->ecx);
break;
}
case SYS_READ: {
if (vfs_ready((char *)r->ebx)) {
r->eax = (u32)vfs_read((char *)r->ebx, (void *)r->ecx, r->edx, r->esi);
} else {
if (vfs_wait((char *)r->ebx, (u32)vfs_read) < 0)
r->eax = -1;
else
proc_yield(r);
}
break;
}
case SYS_WRITE: {
r->eax = (u32)vfs_write((char *)r->ebx, (void *)r->ecx, r->edx, r->esi);
break;
}
case SYS_IOCTL: {
r->eax = (u32)vfs_ioctl((char *)r->ebx, r->ecx, (void *)r->edx, (void *)r->esi,
(void *)r->edi);
break;
}
case SYS_POLL: {
s32 ret = vfs_poll((const char **)r->ebx);
if (ret == PROC_MAX_WAIT_IDS + 1)
proc_yield(r);
else
r->eax = ret;
break;
}
case SYS_EXEC: {
char *path = (char *)r->ebx;
struct proc *proc = proc_make(PROC_PRIV_NONE);
r->eax = (u32)bin_load(path, proc);
u32 argc = 3; // TODO: Add argc evaluator
char **argv = malloc(sizeof(*argv) * (argc + 1));
argv[0] = (char *)r->ecx;
argv[1] = (char *)r->edx;
argv[2] = (char *)r->esi;
argv[3] = (char *)r->edi;
argv[4] = NULL;
((u32 *)proc->regs.useresp)[0] = argc;
((u32 *)proc->regs.useresp)[1] = (u32)argv;
if (r->eax)
proc_exit(proc, (int)r->eax);
proc_yield(r);
break;
}
case SYS_EXIT: {
proc_exit(proc_current(), (int)r->ebx);
break;
}
case SYS_YIELD: {
proc_yield(r);
break;
}
case SYS_TIME: {
r->eax = timer_get();
break;
}
case SYS_NET_OPEN: {
r->eax = (int)net_open(r->ebx);
break;
}
case SYS_NET_CLOSE: {
struct socket *s = (void *)r->ebx;
int status = net_close(s);
if (!status) {
proc_yield(r);
return;
}
r->eax = net_close(s);
break;
}
case SYS_NET_CONNECT: {
struct socket *s = (void *)r->ebx;
if (s->state == S_CONNECTED)
r->eax = 1;
else if (s->state == S_FAILED || s->state == S_CLOSED)
r->eax = 0;
else if (s->state == S_OPEN)
r->eax = net_connect(s, r->ecx, r->edx);
break;
}
case SYS_NET_SEND: {
net_send((void *)r->ebx, (void *)r->ecx, r->edx);
break;
}
case SYS_NET_RECEIVE: {
r->eax = net_receive((void *)r->ebx, (void *)r->ecx, r->edx);
break;
}
default: {
print("Unknown syscall!\n");
break;
}
}
}
void syscall_init(void)
{
idt_set_gate(0x80, (u32)isr128, 0x08, 0x8E);
isr_install_handler(0x80, syscall_handler);
}
|