// MIT License, Copyright (c) 2021 Marvin Borner // Everything according to spec #include #include #include #include #include // The address where data gets stored #define MB1_LOAD_ADDRESS 0x20000 #define MB1_FLAG_PAGE_ALIGN (1 << 0) // Align modules with page boundaries (4K) #define MB1_FLAG_MEMORY_INFO (1 << 1) // Load/store all memory_* fields and mmap_* structs #define MB1_FLAG_VIDEO_MODE (1 << 2) // Load/store video mode table #define MB1_FLAG_MANUAL_ADDRESSES (1 << 16) // Use specified load addresses struct mb1_entry { u32 magic; u32 flags; u32 checksum; // Everything after that is optional u32 header_addr; // Unsupported u32 load_addr; // Unsupported u32 load_end_addr; // Unsupported u32 bss_end_addr; // Unsupported u32 entry_addr; // Unsupported u32 mode_type; u32 width; u32 height; u32 depth; }; // The (really simple) multiboot checksum algorithm static u32 mb1_checksum(struct mb1_entry *entry) { return -(entry->magic + entry->flags); } // Load data into memory and return address (not overlapping) static u32 mb1_store(void *data, u32 size) { static u32 offset = 0; memcpy((void *)(MB1_LOAD_ADDRESS + offset), data, size); offset += size; return MB1_LOAD_ADDRESS + (offset - size); } static void mb1_store_memory_info(struct mb1_info *info) { // TODO: Store memory_lower and memory_upper struct memory_map *memory_map = memory_map_get(); info->flags |= MB1_INFO_MEMORY_MAP; info->mmap_length = memory_map->count * sizeof(struct mb1_mmap_entry); info->mmap_addr = mb1_store(NULL, 0); for (u32 i = 0; i < memory_map->count; i++) { struct mb1_mmap_entry mmap_entry = { 0 }; mmap_entry.struct_size = sizeof(mmap_entry) - 4; mmap_entry.addr_low = memory_map->entry[i].base; mmap_entry.len_low = memory_map->entry[i].length; mmap_entry.type = memory_map->entry[i].type; mb1_store(&mmap_entry, sizeof(mmap_entry)); } } // Load the mb1 structs into memory static void mb1_load(struct mb1_entry *entry) { struct mb1_info info_struct = { 0 }; struct mb1_info *info = (void *)mb1_store(&info_struct, sizeof(info_struct)); // Set boot device info->flags |= MB1_INFO_BOOTDEV; info->boot_device = boot_disk; // Set bootloader name info->flags |= MB1_INFO_BOOT_LOADER_NAME; char loader_name[] = "SegelBoot"; info->boot_loader_name = mb1_store(loader_name, sizeof(loader_name)); // Store memory info if (entry->flags & MB1_FLAG_MEMORY_INFO) mb1_store_memory_info(info); } // Jump to kernel with correct info pointer in eax static void mb1_jump(u32 entry, u32 info) { log("Jumping. So long and thanks for all the fish!\n"); // Move and jump! __asm__ volatile("movl $" STRINGIFY(MB1_LOAD_MAGIC) ", %%eax\n\t" "jmpl *%%edi\n\t" : : "D"(entry), "b"(info) : "memory"); panic("Jumper returned\n"); } // Detect and verify mb1 u8 mb1_detect(struct config_entry *cfg) { u8 header[8192] = { 0 }; s32 ret = cfg->dev->p.disk.fs.read(cfg->path, header, 0, sizeof(header), cfg->dev); if (ret < 12) return 0; // Find start of multiboot entry by searching for magic struct mb1_entry *entry = 0; for (u32 i = 0; i < sizeof(header); i++) { u32 *p = (u32 *)&header[i]; if (*p == MB1_MAGIC) { entry = (void *)p; break; } } if (!entry) return 0; u32 checksum = mb1_checksum(entry); if (checksum != entry->checksum) return 0; cfg->impl.type = IMPL_MB1; cfg->impl.offset = (u32)entry - (u32)header; return 1; } // Execute mb1 type kernel void mb1_exec(struct config_entry *cfg) { struct mb1_entry mb1_entry = { 0 }; s32 ret = cfg->dev->p.disk.fs.read(cfg->path, &mb1_entry, cfg->impl.offset, sizeof(mb1_entry), cfg->dev); assert(ret == sizeof(mb1_entry)); mb1_load(&mb1_entry); u32 entry = elf_load(cfg->dev, cfg->path); // This is a kind of hacky parameter stack pushing thing, just disable warning :) #pragma GCC diagnostic ignored "-Wpedantic" jmp_kernel((void *)mb1_jump, 2, entry, MB1_LOAD_ADDRESS); #pragma GCC diagnostic pop }