1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
|
// MIT License, Copyright (c) 2021 Marvin Borner
// Everything according to spec
#include <elf.h>
#include <impl/mb1.h>
#include <lib.h>
#include <mem.h>
#include <pnc.h>
// The address where data gets stored
#define MB1_LOAD_ADDRESS 0x10000
struct mb1_entry {
u32 magic;
u32 flags;
u32 checksum; // Everything after that is optional
u32 header_addr;
u32 load_addr;
u32 load_end_addr;
u32 bss_end_addr;
u32 entry_addr;
u32 mode_type;
u32 width;
u32 height;
u32 depth;
};
// The (really simple) multiboot checksum algorithm
static u32 mb1_checksum(struct mb1_entry *entry)
{
return -(entry->magic + entry->flags);
}
// Load data into memory and return address (not overlapping
static u32 mb1_store(void *data, u32 size)
{
static u32 offset = 0;
memcpy((void *)(MB1_LOAD_ADDRESS + offset), data, size);
offset += size;
return MB1_LOAD_ADDRESS + (offset - size);
}
static void mb1_store_mmap(struct mb1_info *info)
{
struct mem_map *mem_map = mem_map_get();
info->flags |= MB1_INFO_MEM_MAP;
info->mmap_length = mem_map->count * sizeof(struct mb1_mmap_entry);
info->mmap_addr = mb1_store(NULL, 0);
for (u32 i = 0; i < mem_map->count; i++) {
struct mb1_mmap_entry mmap_entry;
mmap_entry.struct_size = sizeof(mmap_entry) - 4;
mmap_entry.addr_low = mem_map->entry[i].base;
mmap_entry.len_low = mem_map->entry[i].length;
mmap_entry.type = mem_map->entry[i].type;
mb1_store(&mmap_entry, sizeof(mmap_entry));
}
}
// Load the mb1 structs into memory
static void mb1_load(struct mb1_entry *entry)
{
(void)entry;
struct mb1_info info_struct = { 0 };
struct mb1_info *info = (void *)mb1_store(&info_struct, sizeof(info_struct));
// Set boot device
info->flags |= MB1_INFO_BOOTDEV;
info->boot_device = boot_disk;
// Set bootloader name
info->flags |= MB1_INFO_BOOT_LOADER_NAME;
char loader_name[] = "SegelBoot";
info->boot_loader_name = mb1_store(loader_name, sizeof(loader_name));
// Set memory map
/* if (entry->flags & 2) TODO */
mb1_store_mmap(info);
}
// Jump to kernel with correct info pointer in eax
static void mb1_jump(u32 entry, u32 info)
{
log("Jumping. So long and thanks for all the fish!\n");
// Move and jump!
__asm__ volatile("movl $" STRINGIFY(MB1_LOAD_MAGIC) ", %%eax\n\t"
"jmpl *%%edi\n\t"
:
: "D"(entry), "b"(info)
: "memory");
panic("Jumper returned\n");
}
// Detect and verify mb1
u8 mb1_detect(struct cfg_entry *cfg)
{
u8 header[8192] = { 0 };
s32 ret = cfg->dev->p.disk.fs.read(cfg->path, header, 0, sizeof(header), cfg->dev);
if (ret < 12)
return 0;
// Find start of multiboot entry by searching for magic
struct mb1_entry *entry = 0;
for (u32 i = 0; i < sizeof(header); i++) {
u32 *p = (u32 *)&header[i];
if (*p == MB1_MAGIC) {
entry = (void *)p;
break;
}
}
if (!entry)
return 0;
u32 checksum = mb1_checksum(entry);
if (checksum != entry->checksum)
return 0;
cfg->impl.type = IMPL_MB1;
cfg->impl.start = entry;
return 1;
}
#include <pic.h>
// Execute mb1 type kernel
void mb1_exec(struct cfg_entry *cfg)
{
u32 entry = elf_load(cfg->dev, cfg->path);
mb1_load(cfg->impl.start);
// This is a kind of hacky parameter stack pushing thing, just disable warning :)
#pragma GCC diagnostic ignored "-Wpedantic"
jmp_kernel((void *)mb1_jump, 2, entry, MB1_LOAD_ADDRESS);
#pragma GCC diagnostic pop
}
|