
Volcanic APL Advent-ure
Marvin Borner

marvin.borner@student.uni-tuebingen.de
Eberhard Karls Universität

Tübingen, Baden-Württemberg, Germany

ABSTRACT
As part of a programming seminar we are tasked to solve a prob-
lem of the yearly programming competition Advent of Code. We
translate the given storyline to an abstract problem, which involves
a grid and two slightly different graph searches. We then visualize
the problem for better understanding, derive pseudocode solutions,
and translate the pseudocode to the APL programming language.
We confirm our solutions by visualizing the algorithms in anima-
tions. We argue that a structured approach to problem-solving is
an efficient way of learning new programming languages.

KEYWORDS
Advent of Code, BFS, APL, problem-solving, proseminar

1 ADVENT OF CODE
Advent of Code is yearly created by Eric Wastl and contains 25
programming puzzles – one for each day until Christmas. The
puzzles cover different programming techniques and appeal to
programmers of varying skill set[11].

Each problem of a year is part of a coherent storyline and con-
sists of two related parts. Approaching Christmas the problems get
increasingly more difficult, judging by the average solving times on
the public leaderboard. Still, the challenges often involve the same
fundamental techniques[10][1]:

• Graph Traversal: e.g. days 12, 15, 18, 19, 21
• Map Parsing: e.g. days 8, 11, 13, 14
• Mathematics: e.g. days 2, 3, 6, 7, 9
• (Virtual) Machines: e.g. days 5, 10

A solution to any problem of Advent of Code is the composition
of multiple steps:

(1) formalization of an informal story to a precise problem
description

(2) parsing of the text-based input into a fitting data structure
(3) implementation of algorithms that solve the problem
(4) integer outputs that represent or combine some state of the

algorithms

We use a new-to-us programming language. To make it easier,
we achieve step (3) by first creating a pseudocode solution which
we then translate to the target language.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License.

2 PROBLEM
As part of a programming seminar we are given the 18th Advent of
Code problem of the year 2022. Empirically, we can assign an esti-
mated difficulty level of higher-than-average based on the distance
to day 25.

The story is connected to the previous problem of day 17 and
occurs at a similar location with the same characters. The protago-
nist, in the story denoted as you, is observing an erupting volcano
from afar. They realize that some of the lava drops fall into nearby
water and turn into obsidian. The story suggests that such reaction
happens depending on the cooling rate of the lava drop, which in
turn depends on the surface area of the drop[12].

The protagonist measures the lava drops using an imprecise
measuring device. For each lava drop, the device returns a set of
three-dimensional coordinates of lava cubes that resemble a rough
grid of its volume.

Both parts of the task involve the calculation of the surface area
of a grid-based approximation of one given lava drop. The second
part, as described below, involves an edge case that is not dealt with
in the first part.

3 APL
We use Dyalog’s implementation of the APL (A Programming Lan-
guage) programming language for the final implementation of the
solutions for both tasks.

APL was introduced in 1962 by Kenneth E. and is closely related
to notations of mathematics[6]. Only slowly the language was
implemented to become an actual programming language. Dyalog’s
implementation is based on the original notation but extends upon
it with various modern features[5].

The language is arguably very different from common languages,
for example since it uses Unicode symbols instead of ASCII words
for most functions, control structures and operators. We will there-
fore give a short overview of the language.

By default, APL includes many built-in functions, notably equiv-
alents of “transformation” functions such as map or fold. Those
functions are either niladic, monadic, dyadic, or any subset of the
three. This adicity specifies the number of arguments a function
gets, but also selects the actual computation of the function. In the
dyadic case, one argument gets applied to both sides of the function:

By composing such symbols, APL code can be more compact
than equivalent code in other languages. A famous example is

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode

Marvin Borner

the simulation of the Game of Life cellular automaton, originally
implemented by Conor Hoekstra[9]:

Since functions get applied with right associativity, it can help
to read lines of code from right to left.

APL is an array-oriented programming language, meaning that
the prevalent data structure is an array. Since its functions typ-
ically work on multi-dimensional array structures, efficient im-
plementations allow parallel evaluation of standard non-parallel
algorithms[2]. This makes the language attractive to data scientists
and programmers of high-performance software.

4 PARSING
The input consists of more than 2700 lines of comma-separated
integers in the interval [0, 20]. Every line represents the coordinate
of a lava cube inside the lava drop.

A prerequisite of solving the actual task is the parsing of the
input data and its translation to a fitting data structure. For efficient
traversal of the data we want the parser to yield a two-dimensional
array of coordinates:

i npu t a r r ay
2 , 2 , 2 [[2 , 2 , 2] ,
1 , 2 , 2 [1 , 2 , 2] ,
3 , 2 , 2 −−> [3 , 2 , 2] ,
2 , 1 , 2 [2 , 1 , 2] ,
2 , 3 , 2 [2 , 3 , 2] ,
.]

In Python-like pseudocode this translation could be accomplished
using a nested list comprehension:

cubes = [
[int(n) for n in line.strip().split(",")]
for line in open("input").readlines()

]

In APL, we can use a more minimal technique based on evalua-
tion:

From right to left: We read the input data and split it linewise
into a nested array (implied by the 1 flag of NGET), then take the
first element of the resulting array (the content of the file), and

then execute each line. In APL, the execution of a string like 2,2,2
results in an array of the respective three numbers:

…

5 TASK 1
In the first part we are tasked to calculate the surface area of the
lava drop using the given coordinates of lava cubes.

All cubes are, by definition, the same size. The total surface area
is therefore the result of adding all sides of the cubes that aren’t
directly connected to another cube. In an initial solution we do this
by iterating over every cube, looking at its 6 sides, and incrementing
a global counter variable if the side coordinate is not within the
given cube set.

In a minimized two-dimensional setting this can be visualized
as the following procedure, where the arrows indicate the sides the
algorithm looks at (here only drawn for a single vertex):

drop border

+1

+1

Note that we deliberately ignore the fact that the technique
also counts non-connected coordinates inside the lava drop. Not
counting this is part of the second task and irrelevant for this
section.

The following pseudocode will therefore be a valid solution:

count = 0
for cube in cubes:

for neighbor in neighbors(cube):
if neighbor not in cubes:

count += 1
print(count)

We now derive a mathematical solution from the iterative code.
Here, we first calculate the 6 movements, then create a multiset by
adding every cube to every movement, subtract the original set of
cubes, and finally count the elements of the resulting set:

Volcanic APL Advent-ure

cubes = {(2, 2, 2), (1, 2, 2), (3, 2, 2), (2, 1, 2), (2, 3, 2), . . . }
movements = {�3,−�3}

sides = [2 +< | ∀2 ∈ cubes,∀< ∈ movements]
result = |sides − cubes|

The equations can be directly translated to APL code:

In the first line we compute the identity matrix �3 by creating a
vector (1, 0, 0, 0) and then using the dyadic Reshape function that
turns it into a 3 × 3 array by repeating it until the array is filled.
movements is then the result of the concatenation of the positive
and negative identity matrix – here created using a curly-bracket
function with its right argument l concatenated with the negated
−l .

Secondly, we calculate the summed outer product of cubes
and movements using ◦.+ which is then concatenated into a one-
dimensional array.

The final step uses the dyadic Without function ∼ to subtract
the sets and the monadic Tally function to count the elements.

5.1 Complexity
The initial pseudocode solution has a linear time complexity of
O(6=) = O(=), since we iterate every cube once and the amount
of neighbors is fixed to be 6. This assumes that the set inclusivity
check is also in O(=), which can be implemented to take constant
time O(1) [13].

The APL solution is a transformation of the pseudocode solution
and uses the same amount of “loops”, O(6=) = O(=). Here, the
set subtraction is done externally and would also require = steps
of set inclusivity checks, therefore taking time in O(=). However,
since the code only operates on multi-dimensional arrays, we can
expect compiler optimizations to take down the effective worst-case
complexity to sublinear time[2].

5.2 Worst-Case
The complexity of our implemented algorithm is solely defined by
the amount of given coordinates, ergo the size of the lava drop. Since
we expect set inclusivity checks to take constant time regardless of
inclusivity or exclusivity, it doesn’t affect the performance whether
the cubes are connected, have holes between them, or are not
connected at all.

6 TASK 2
As stated before, the second task also considers holes filled with air
inside the lava drop. The previous solution counts holes as surface
area since they neighbor cubes while not being inside the cube set
itself.

Here, we count only the exterior surface area of the lava drop,
without considering any holes within. To do this, we construct a

boundary around the entire grid and then use flood-filling around
the lava drop without crossing into the drop itself – thus ignoring
all holes.

Still, for every visited cube the six neighbors have to be iterated.
If a neighbor is part of a cube set, the global counter needs to be
incremented. Our flood-filling algorithm therefore needs a set of
visited nodes such that we don’t count any borders twice.

In the following minimized two-dimensional example we start
from the top right of the boundary and fill the grid in a breadth-first
order. The first 7 steps are marked, with the additional queries for
the neighbors marked in green. Note how holes inside the cube set
will never be considered by the algorithm.

boundary

hole

1

2

3

4

5

6

+2

+2 7

. . .
.
.
.

.

.

.

. . .

To implement this in pseudocode, we use a breadth-first-search
(BFS) algorithm:

count = 0
visited = set(cubes)
Q = [max_coord + (1, 1, 1)]
while Q:

cube = Q.dequeue()
for neighbor in neighbors(cube):

if not in_boundary(neighbor):
continue

if neighbor in cubes:
count += 1

if neighbor in visited:
continue

visited.add(neighbor)
Q.enqueue(neighbor)

print(count)

The visited set is initialized with the cubes such that the flood-
fill never enters the lava drop itself.The starting value of the queue is
some point outside of the cube set, here the incremented maximum
coordinates.

Translating the pseudocode to APL requires implementations of
the assumed definitions:

Marvin Borner

The maximums/minimums are calculated by folding the cubes
over the dyadic maximum/minimum function and then adding/sub-
tracting 1.

The boundary checker creates a one-dimensional array of 6 ones
or zeroes depending on whether any value of the given coordinate
is smaller or larger than the minimum and maximum coordinates.
These values are then summed using the dyadic fold function and
compared to zero – ultimately yielding a one/zero if the coordinate
is within the boundary or not.

Our BFS implementation is derived from a snippet within Dya-
log’s utility functions database[8]:

This uses a trick that only works with APL’s dyadic functions:
The set of visited vertices as well as the queue are encoded as left
and right arguments of the function (see first and last line). In the
recursive dyadic call ∇, the visited set is extended with the lastly
dequeued element head of the queue, and the queue is set to the
union of the tail and next elements (with the already visited
vertices U removed).

Our solution applies several modifications:
(1) Return the global counting variable if the queue is empty.

Also use a different ending condition since our queue is
multi-dimensional because of the coordinate arrays.

(2) Next elements are chosen from the neighbors within the
boundary.

(3) The global counting variable is incremented by all neighbors
that are not inside the cube set.

Similar to the pseudocode implementation, the visited set is
initially set to cubes such that the algorithm doesn’t enter the drop.
The queue is initialized to the starting point, here an array of the
incremented maximum coordinates maxs defined before.

6.1 Complexity & Worst-Case
The breadth-first-search algorithm has a time complexity of O(+ +
�), + being the number of vertices and � the number of edges in a
graph[3].

In the worst case, the number of accessible vertices is (approxi-
mately) the entire area within the boundary. In our implementation

this scenario can be achieved by setting the input to two coordi-
nates with the first one being at the front-bottom-left of a large
hypothetical cube and the second one being at the back-top-right.

In a realistic setting this worst-case scenario doesn’t make sense.
We would not expect a lava drop to have only two parts with a lot
of air between them. However, even if we had six lava cubes in
a three-dimensional grid connected by single-cube diagonals, the
limiting behavior with arbitrarily large coordinates would still be
in the same range.

In general, we can expect the boundary dimensions to be pro-
portional to the input size =. Then, + = =3.

The number of edges is 6+ = 6=3, since every vertex has six
neighbors. Therefore the time complexity is O(7=3) = O(=3).

7 VISUALIZATIONS
Some APL editors support a live view of variables. For our visu-
alizations, we used Dyalog’s Ride IDE. Changing the variables at
runtime will directly show the updated data to the user. Inspired
by the life snippet from the beginning, we use this feature to
repeatedly update a grid of characters to get an animation of the
data.

In the first animation we want to visualize the “movement” of the
BFS algorithm in part 2. To do this, we extend the implementation
with an instruction to write ’X’ at every dequeued coordinate. Since
the lava drop itself is never entered, we expect an inverted view of
the drop. The grid is three-dimensional so the data is printed as a
concatenation of its two-dimensional layers.

For simplicity, the implementation forces the minimum coordi-
nate to be (0, 0, 0) using the monadic absolute function |. This is
also in accordance with our input data.

The animation shows the progress of the BFS and ends with the
final state of the algorithm. For example, the final state around the
middle of the generated output (notice the start of the layers above
and below):

Volcanic APL Advent-ure

We then show the layers of the grid using a timeout and iteration:

A recording of the animation can be found in the supplementary
material or on GitHub.

8 DISCUSSION
Our solutions both run within a reasonable timeframe of less than
one second. Aside from using explicit parallelization, we were not
able to find more efficient solutions to the problem.

In part 2, there may be some benefits of running the BFS within
the lava drop. This eliminates the need for a boundary and, depend-
ing on the shape of the drop, could require fewer steps.

However, it is not clear whether the lava drop is guaranteed to
be one coherent shape – it could have smaller drops outside of its
main part (see also Complexity & Worst-Case). Our technique does
not ignore such cases.

8.1 APL
The APL language was chosen out of interest and is unusual for
such programming problems[4]. We believe this is because of three
main reasons:

(1) Accessibility:
• Tutorials are not easy to find and often assume existing

knowledge about array/stack-oriented programming.
• Documentation may only work for specific APL di-

alects or versions.
• Forums on specific problems are often broken or not

existent.
(2) Learning Curve:

• Memorizing unicode operators and their key combina-
tions require a lot of time and dedication.

• The syntax and coding style is unconventional and
different from most other modernly used languages.

(3) Attractiveness:
• Websites and documentations do not look modern or

appealing to young programmers.
• Slogans and users do not make convincing arguments

for using APL.
• APL is often represented as an esoteric “golfing” lan-

guage.
• Some design choices are implications from backward

compatibility and its old age.[7]
We knew some of these arguments before deciding on using

this language. In the process of solving the problems, however, we
learned to appreciate the concise and logical way that the language
is structured. Contrary to popular belief, the language can be very
readable and enjoyable.

While our solutions themself are not the most concise and could
be reduced further, one can clearly see a significant code reduction
during the translation of pseudocode to APL. Furthermore, the

final solutions even use more elegant algorithms than originally
intended.

Most of the stated criticism is related to the language’s history
and age and could be reduced with better documentations, tutorials,
and more standardization. Modern alternatives such as “BQN” try
to reduce these issues and are more appealing to younger program-
mers.[7]

Generally we believe that languages like APL should be known
to more people, for example by being taught in more universities.

8.2 Problem Solving & Language Learning
Problems such as the Advent of Code challenges often involve the
same techniques and can be approached using similar strategies, as
shown in section 1. Having a structured approach to the problem
not only helped us understand the underlying tasks, but also to
learn the APL programming language itself.

To us, simplifying the problem and reducing its parameters – for
example using two dimensions instead of three – helped finding
an initial solving strategy. In combination with visualizations, we
were able to directly derive pseudocode solutions. Problems arising
during the translation of the pseudocode to the actual solution
allowed us to research concrete aspects of APL.

We believe this technique to be generally useful for learning new
programming languages.

9 CONCLUSION
We demonstrated solving a specific programming problem through
a structured approach. By careful problem reduction and visual-
izations, we were able to derive succinct pseudocode involving
only common data structures and algorithms. Step-by-step, our
technique yielded a final fairly concise snippet of APL code.

We showed that solving these problems in a deliberate structure
not only makes problem-solving and algorithmic understanding
easier, but can also help learning new languages.

We want to thank the anonymous reviewers for their helpful notes.

REFERENCES
[1] Marvin Borner. 2022. Advent of Code Solutions. https://github.com/marvinborner/

AdventOfCode/tree/main/2022
[2] Wai-Mee Ching and Da Zheng. 2012. Automatic parallelization of array-oriented

programs for a multi-core machine. International Journal of Parallel Programming
40, 5 (2012), 514–531.

[3] Charles E.; Rivest Ronald L.; Stein Clifford Cormen, Thomas H.; Leiserson. 1990.
22.2 Breadth-first search. Introduction to Algorithms (1990), 531–539.

[4] Jeroen Heijmans. [n. d.]. Advent of Code Survey. https://jeroenheijmans.github.
io/advent-of-code-surveys/

[5] Roger KW Hui and Morten J Kromberg. 2020. APL since 1978. Proceedings of the
ACM on Programming Languages 4, HOPL (2020), 1–108.

[6] Kenneth E Iverson. 1962. A programming language. In Proceedings of the May
1-3, 1962, spring joint computer conference. 345–351.

[7] Mashall Lochbaum. [n. d.]. Why BQN. https://mlochbaum.github.io/BQN/
commentary/why.html

[8] John Scholes. 2022. Classic Breadth-First Search. https://dfns.dyalog.com/n_bfs.
htm

[9] John Scholes. 2022. John Conway’s ”Game of Life”. https://dfns.dyalog.com/n_
life.htm

[10] Eric Wastl. 2022. Advent of Code. https://adventofcode.com/2022/
[11] Eric Wastl. 2022. Advent of Code, About. https://adventofcode.com/2022/about
[12] Eric Wastl. 2022. Advent of Code, Day 18. https://adventofcode.com/2022/day/18
[13] Daniel M Yellin. 1992. Representing sets with constant time equality testing.

Journal of Algorithms 13, 3 (1992), 353–373.

https://github.com/marvinborner/acm_seminar/blob/main/rendering.mkv
https://github.com/marvinborner/AdventOfCode/tree/main/2022
https://github.com/marvinborner/AdventOfCode/tree/main/2022
https://jeroenheijmans.github.io/advent-of-code-surveys/
https://jeroenheijmans.github.io/advent-of-code-surveys/
https://mlochbaum.github.io/BQN/commentary/why.html
https://mlochbaum.github.io/BQN/commentary/why.html
https://dfns.dyalog.com/n_bfs.htm
https://dfns.dyalog.com/n_bfs.htm
https://dfns.dyalog.com/n_life.htm
https://dfns.dyalog.com/n_life.htm
https://adventofcode.com/2022/
https://adventofcode.com/2022/about
https://adventofcode.com/2022/day/18

	Abstract
	1 Advent of Code
	2 Problem
	3 APL
	4 Parsing
	5 Task 1
	5.1 Complexity
	5.2 Worst-Case

	6 Task 2
	6.1 Complexity & Worst-Case

	7 Visualizations
	8 Discussion
	8.1 APL
	8.2 Problem Solving & Language Learning

	9 Conclusion
	References

