aboutsummaryrefslogtreecommitdiffhomepage
path: root/readme.md
diff options
context:
space:
mode:
Diffstat (limited to 'readme.md')
-rw-r--r--readme.md18
1 files changed, 9 insertions, 9 deletions
diff --git a/readme.md b/readme.md
index 25c3389..4f02243 100644
--- a/readme.md
+++ b/readme.md
@@ -77,14 +77,14 @@ as ðŸĨðŸĶ. The successor function can be written as ðŸĶĒ🐧:
- ðŸĶ🐧ðŸĶðŸĶĒ🐧ðŸĨðŸĶ $\rightsquigarrow\lambda\lambda(10)$ – (Church numeral
1)
-- ðŸĶ🐧ðŸĶ🐧🕊ïļðŸĶĒ🐧ðŸĶĒ🐧ðŸĨðŸĶ $\rightsquigarrow\lambda(1(10))$ – (Church
- numeral 2)
+- ðŸĶ🐧ðŸĶ🐧🕊ïļðŸĶĒ🐧ðŸĶĒ🐧ðŸĨðŸĶ $\rightsquigarrow\lambda\lambda(1(10))$ –
+ (Church numeral 2)
Similarly, one can very obviously translate the Church addition function
to ðŸŠ―ðŸ§. Now, to calculate $1+2$ based on their increments from zero:
- ðŸĶðŸĶ🕊ïļðŸ§ðŸ•ŠïļðŸ§ðŸĶ🐧🕊ïļðŸ§ðŸ•ŠïļðŸŠ―🐧ðŸĶĒ🐧ðŸĶĒ🐧ðŸĨðŸĶðŸĶĒ🐧ðŸĨðŸĶ
- $\rightsquigarrow\lambda(1(1(10)))$ – (Church numeral 3)
+ $\rightsquigarrow\lambda\lambda(1(1(10)))$ – (Church numeral 3)
Also: 🐧 is $a\cdot b$, ðŸĶœ is $n^n$ and ðŸĶšðŸĶ $a^b$.
@@ -124,12 +124,12 @@ sometimes manually converted the term back to birbs.
# Turing-completeness
-Birb is Turing complete.
-
-It turns out that even its sub-language $\Sigma=\{ðŸĶĒðŸĨ\}$ (SK) is Turing
-complete, since the semantics allow an initial construction of ðŸĶ using
-`((ðŸĶĒ ðŸĨ) ðŸĨ)`. By doing that, birb is equivalent to the
-[Jot](https://esolangs.org/wiki/Jot) variant of Iota calculus.
+Birb is Turing complete, since one can construct any term of the
+[Jot](https://esolangs.org/wiki/Jot) variant of Iota. A Jot term
+`((X s) k)` is equivalent to `ðŸĶXðŸĶĒðŸĨ`. Similarly, `(s (k X))` is
+equivalent to `ðŸĶðŸĶ🐧ðŸĶĒðŸĨX`. This can be extended for arbitrary long terms
+using increasingly more complicated construction of composition
+combinators.
------------------------------------------------------------------------