# Birb Birb is an *advanced* programming language that only consists of bird emojis ๐Ÿฃ. Each emoji gets substituted by a [*combinator bird*](https://www.angelfire.com/tx4/cus/combinator/birds.html) of pure lambda calculus. ## Birbs Unfortunately, the Unicode standard does not yet have many (single-character) birds. These are the ones currently mapped/supported: | emoji | animal | combinator | bruijn | term | |:-----:|----------------|--------------|---------------------|------------------------------------| | ๐Ÿฆ‰ | owl | owl | `[[0(10)]]` | $\lambda ab.b(ab)$ | | ๐Ÿฆ… | eagle | eagle | `[[[[[43(210)]]]]]` | $\lambda abcde.ab(cde)$ | | ๐Ÿชฝ | wing | phoenix | `[[[[3(20)(10)]]]]` | $\lambda abcd.a(bd)(cd)$ | | ๐Ÿ•Š๏ธ | dove | dove | `[[[[32(10)]]]]` | $\lambda abcd.ab(cd)$ | | ๐Ÿฆœ | parrot | mockingbird | `[00]` | $\lambda a.aa$ | | ๐Ÿฆ† | duck | quacky | `[[[0(12)]]]` | $\lambda abc.c(ba)$ | | ๐Ÿค | touring chick | turing | `[[0(110)]]` | $\lambda ab.b(aab)$ | | ๐Ÿฅ | kool chick | kestrel | `[[1]]` | $\lambda ab.a$ | | ๐Ÿฃ | hatching chick | quirky | `[[[0(21)]]]` | $\lambda abc.c(ab)$ | | ๐Ÿฆ | simple bird | identity | `[0]` | $\lambda a.a$ | | ๐Ÿฆš | peacock | queer | `[[[1(20)]]]` | $\lambda abc.b(ac)$ | | ๐Ÿฆค | dodo | sage | `[[0(11)][0(11)]]` | $\lambda ab.b(aa)\lambda ab.b(aa)$ | | ๐Ÿง | penguin | blackbird | `[[[2(10)]]]` | $\lambda abc.a(bc)$ | | ๐Ÿฆข | swan | substitution | `[[[20(10)]]]` | $\lambda abc.ac(bc)$ | | ๐Ÿฆฉ | flamingo | cardinal | `[[[201]]]` | $\lambda abc.acb$ | Lonely/unmatched birbs: ๐Ÿ”๐Ÿฆƒ๐Ÿ“ # Syntax - `[birb]+`: Birb - everything else: Comment # Semantics Birbs stagger as they walk: they are reduced in alternating associative order, starting with birb index $\lfloor\frac{\texttt{len}}{2}\rfloor$: ๐Ÿฆ๐Ÿฆ -> (๐Ÿฆ๐Ÿฆ) ๐Ÿฆ๐Ÿฆ๐Ÿฆ -> ((๐Ÿฆ๐Ÿฆ)๐Ÿฆ) ๐Ÿฆ๐Ÿฆ๐Ÿฆ๐Ÿฆ -> (๐Ÿฆ((๐Ÿฆ๐Ÿฆ)๐Ÿฆ)) ๐Ÿฆ๐Ÿฆ๐Ÿฆ๐Ÿฆ๐Ÿฆ -> ((๐Ÿฆ((๐Ÿฆ๐Ÿฆ)๐Ÿฆ))๐Ÿฆ) ๐Ÿฆ๐Ÿฆ๐Ÿฆ๐Ÿฆ๐Ÿฆ๐Ÿฆ -> (๐Ÿฆ((๐Ÿฆ((๐Ÿฆ๐Ÿฆ)๐Ÿฆ))๐Ÿฆ)) ๐Ÿฆ๐Ÿฆ๐Ÿฆ๐Ÿฆ๐Ÿฆ๐Ÿฆ๐Ÿฆ -> ((๐Ÿฆ((๐Ÿฆ((๐Ÿฆ๐Ÿฆ)๐Ÿฆ))๐Ÿฆ))๐Ÿฆ) # Examples You can find more examples in the `samples/` directory. ## Relationships - ๐Ÿฆ‰๐Ÿฆ $\rightsquigarrow$ ๐Ÿฆœ - ๐Ÿฆข๐Ÿฆ $\rightsquigarrow$ ๐Ÿฆ‰ - ๐Ÿง๐Ÿง $\rightsquigarrow$ ๐Ÿ•Š๏ธ - ๐Ÿฆฉ๐Ÿง $\rightsquigarrow$ ๐Ÿฆš - ๐Ÿฆฉ๐Ÿฆš $\rightsquigarrow$ ๐Ÿง One can only imagine what happens if two parrots repeat each other: ๐Ÿฆœ๐Ÿฆœ $\rightsquigarrow$ ๐Ÿ’ฅ ## Arithmetic For this example I use the Church numerals. Zero would then be encoded as ๐Ÿฅ๐Ÿฆ. The successor function can be written as ๐Ÿฆข๐Ÿง: - ๐Ÿฆ๐Ÿง๐Ÿฆ๐Ÿฆข๐Ÿง๐Ÿฅ๐Ÿฆ $\rightsquigarrow$ ฮปฮป(10) โ€“ (Church numeral 1) - ๐Ÿฆ๐Ÿง๐Ÿฆ๐Ÿง๐Ÿ•Š๏ธ๐Ÿฆข๐Ÿง๐Ÿฆข๐Ÿง๐Ÿฅ๐Ÿฆ $\rightsquigarrow$ ฮปฮป(1(10)) โ€“ (Church numeral 2) Similarly, one can very obviously translate the Church addition function to ๐Ÿง๐Ÿฆข๐Ÿฅ๐Ÿฆข๐Ÿ•Š๏ธ. Now, to calculate $1+2$ based on their increments from zero: - ๐Ÿฆข๐Ÿง๐Ÿฆข๐Ÿง๐Ÿฅ๐Ÿฆ Also: ๐Ÿง is $a\cdot b$, ๐Ÿฆœ is $n^n$ and ๐Ÿฆš๐Ÿฆ $a^b$. Note that there are many alternative ways to do arithmetic. Try writing the functions above with other birbs! ## Busy ~~beavers~~ birbs - The touring eagle: ๐Ÿฆ๐Ÿฆ๐Ÿฆ๐Ÿฆ…๐Ÿค๐Ÿฆ…๐Ÿค๐Ÿฆ…๐Ÿค (~20M BLC bits) - more? PR! # Usage Install [Haskellโ€™s stack](https://docs.haskellstack.org/en/stable/install_and_upgrade/). Then, - `stack run -- file.birb` or `stack run <(echo ๐Ÿง๐Ÿง)` - `stack install` so you can enjoy `birb` from anywhere If the output cannot be translated to birbs, the raw lambda calculus term (with De Bruijn indices) is printed. For the examples above I sometimes manually converted the term back to birbs. # Turing-completeness The language is probably Turing complete. If the language supported left- *and* right-associativity, ๐Ÿง would be enough to prove its completeness. ------------------------------------------------------------------------ The idea of the language was originally proposed in 2021 by an unknown(?) author on [Esolang](https://esolangs.org/wiki/Birb).