From 83b56d1270cdb179b64a1be51f8c1e7fe586c35e Mon Sep 17 00:00:00 2001 From: Marvin Borner Date: Mon, 1 Apr 2019 20:16:24 +0200 Subject: Added content --- test/examples/math.html | 349 +++++++++++++++++++++++++----------------------- 1 file changed, 180 insertions(+), 169 deletions(-) (limited to 'test/examples/math.html') diff --git a/test/examples/math.html b/test/examples/math.html index d35e827..741cea4 100644 --- a/test/examples/math.html +++ b/test/examples/math.html @@ -1,185 +1,196 @@ - - + + - reveal.js - Math Plugin + reveal.js - Math Plugin - + - - - + + + - + -
+
-
+
-
-

reveal.js Math Plugin

-

A thin wrapper for MathJax

-
+
+

reveal.js Math Plugin

+

A thin wrapper for MathJax

+
-
-

The Lorenz Equations

+
+

The Lorenz Equations

- \[\begin{aligned} - \dot{x} & = \sigma(y-x) \\ - \dot{y} & = \rho x - y - xz \\ - \dot{z} & = -\beta z + xy - \end{aligned} \] -
+ \[\begin{aligned} + \dot{x} & = \sigma(y-x) \\ + \dot{y} & = \rho x - y - xz \\ + \dot{z} & = -\beta z + xy + \end{aligned} \] +
-
-

The Cauchy-Schwarz Inequality

+
+

The Cauchy-Schwarz Inequality

- -
- -
-

A Cross Product Formula

- - \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} - \mathbf{i} & \mathbf{j} & \mathbf{k} \\ - \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ - \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 - \end{vmatrix} \] -
- -
-

The probability of getting \(k\) heads when flipping \(n\) coins is

- - \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \] -
- -
-

An Identity of Ramanujan

- - \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = - 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} - {1+\frac{e^{-8\pi}} {1+\ldots} } } } \] -
- -
-

A Rogers-Ramanujan Identity

- - \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = - \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\] -
- -
-

Maxwell’s Equations

- - \[ \begin{aligned} - \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ - \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ - \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} - \] -
- -
-
-

The Lorenz Equations

- -
- \[\begin{aligned} - \dot{x} & = \sigma(y-x) \\ - \dot{y} & = \rho x - y - xz \\ - \dot{z} & = -\beta z + xy - \end{aligned} \] -
-
- -
-

The Cauchy-Schwarz Inequality

- -
- \[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \] -
-
- -
-

A Cross Product Formula

- -
- \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} - \mathbf{i} & \mathbf{j} & \mathbf{k} \\ - \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ - \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 - \end{vmatrix} \] -
-
- -
-

The probability of getting \(k\) heads when flipping \(n\) coins is

- -
- \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \] -
-
- -
-

An Identity of Ramanujan

- -
- \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = - 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} - {1+\frac{e^{-8\pi}} {1+\ldots} } } } \] -
-
- -
-

A Rogers-Ramanujan Identity

- -
- \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = - \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\] -
-
- -
-

Maxwell’s Equations

- -
- \[ \begin{aligned} - \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ - \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ - \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} - \] -
-
-
- -
- -
- - - - - - - + + + + + +
+

A Cross Product Formula

+ + \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} + \mathbf{i} & \mathbf{j} & \mathbf{k} \\ + \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ + \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 + \end{vmatrix} \] +
+ +
+

The probability of getting \(k\) heads when flipping \(n\) coins is

+ + \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \] +
+ +
+

An Identity of Ramanujan

+ + \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = + 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} + {1+\frac{e^{-8\pi}} {1+\ldots} } } } \] +
+ +
+

A Rogers-Ramanujan Identity

+ + \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = + \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\] +
+ +
+

Maxwell’s Equations

+ + \[ \begin{aligned} + \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} + & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi + \rho \\ + \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial + t} & = \vec{\mathbf{0}} \\ + \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} + \] +
+ +
+
+

The Lorenz Equations

+ +
+ \[\begin{aligned} + \dot{x} & = \sigma(y-x) \\ + \dot{y} & = \rho x - y - xz \\ + \dot{z} & = -\beta z + xy + \end{aligned} \] +
+
+ +
+

The Cauchy-Schwarz Inequality

+ +
+ \[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) + \left( \sum_{k=1}^n b_k^2 \right) \] +
+
+ +
+

A Cross Product Formula

+ +
+ \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} + \mathbf{i} & \mathbf{j} & \mathbf{k} \\ + \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ + \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 + \end{vmatrix} \] +
+
+ +
+

The probability of getting \(k\) heads when flipping \(n\) coins is

+ +
+ \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \] +
+
+ +
+

An Identity of Ramanujan

+ +
+ \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = + 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} + {1+\frac{e^{-8\pi}} {1+\ldots} } } } \] +
+
+ +
+

A Rogers-Ramanujan Identity

+ +
+ \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = + \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\] +
+
+ +
+

Maxwell’s Equations

+ +
+ \[ \begin{aligned} + \nabla \times \vec{\mathbf{B}} -\, \frac1c\, + \frac{\partial\vec{\mathbf{E}}}{\partial t} & = + \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi + \rho \\ + \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, + \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ + \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} + \] +
+
+
+ +
+ +
+ + + + + + + -- cgit v1.2.3