From 83b56d1270cdb179b64a1be51f8c1e7fe586c35e Mon Sep 17 00:00:00 2001
From: Marvin Borner
Date: Mon, 1 Apr 2019 20:16:24 +0200
Subject: Added content
---
test/examples/barebones.html | 47 ++---
test/examples/embedded-media.html | 60 +++---
test/examples/math.html | 349 ++++++++++++++++++-----------------
test/examples/slide-backgrounds.html | 285 ++++++++++++++--------------
test/examples/slide-transitions.html | 195 +++++++++----------
5 files changed, 478 insertions(+), 458 deletions(-)
(limited to 'test/examples')
diff --git a/test/examples/barebones.html b/test/examples/barebones.html
index 2bee3cb..3791cae 100644
--- a/test/examples/barebones.html
+++ b/test/examples/barebones.html
@@ -1,41 +1,42 @@
-
-
+
+
- reveal.js - Barebones
+ reveal.js - Barebones
-
-
+
+
-
+
-
+
-
+
-
- Barebones Presentation
- This example contains the bare minimum includes and markup required to run a reveal.js presentation.
-
+
+ Barebones Presentation
+ This example contains the bare minimum includes and markup required to run a
+ reveal.js presentation.
+
-
- No Theme
- There's no theme included, so it will fall back on browser defaults.
-
+
+ No Theme
+ There's no theme included, so it will fall back on browser defaults.
+
-
+
-
+
-
+
-
+
-
+
diff --git a/test/examples/embedded-media.html b/test/examples/embedded-media.html
index bbad4be..e260a83 100644
--- a/test/examples/embedded-media.html
+++ b/test/examples/embedded-media.html
@@ -1,49 +1,51 @@
-
-
+
+
- reveal.js - Embedded Media
+ reveal.js - Embedded Media
-
+
-
-
-
+
+
+
-
+
-
-
-
+
+
-
+
-
+
diff --git a/test/examples/math.html b/test/examples/math.html
index d35e827..741cea4 100644
--- a/test/examples/math.html
+++ b/test/examples/math.html
@@ -1,185 +1,196 @@
-
-
+
+
- reveal.js - Math Plugin
+ reveal.js - Math Plugin
-
+
-
-
-
+
+
+
-
+
-
+
-
+
-
- reveal.js Math Plugin
- A thin wrapper for MathJax
-
+
+ reveal.js Math Plugin
+ A thin wrapper for MathJax
+
-
- The Lorenz Equations
+
+ The Lorenz Equations
- \[\begin{aligned}
- \dot{x} & = \sigma(y-x) \\
- \dot{y} & = \rho x - y - xz \\
- \dot{z} & = -\beta z + xy
- \end{aligned} \]
-
+ \[\begin{aligned}
+ \dot{x} & = \sigma(y-x) \\
+ \dot{y} & = \rho x - y - xz \\
+ \dot{z} & = -\beta z + xy
+ \end{aligned} \]
+
-
- The Cauchy-Schwarz Inequality
+
+ The Cauchy-Schwarz Inequality
-
-
-
-
- A Cross Product Formula
-
- \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
- \mathbf{i} & \mathbf{j} & \mathbf{k} \\
- \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
- \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
- \end{vmatrix} \]
-
-
-
- The probability of getting \(k\) heads when flipping \(n\) coins is
-
- \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
-
-
-
- An Identity of Ramanujan
-
- \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
- 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
- {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
-
-
-
- A Rogers-Ramanujan Identity
-
- \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
- \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
-
-
-
- Maxwell’s Equations
-
- \[ \begin{aligned}
- \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
- \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
- \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
- \]
-
-
-
-
- The Lorenz Equations
-
-
- \[\begin{aligned}
- \dot{x} & = \sigma(y-x) \\
- \dot{y} & = \rho x - y - xz \\
- \dot{z} & = -\beta z + xy
- \end{aligned} \]
-
-
-
-
- The Cauchy-Schwarz Inequality
-
-
- \[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
-
-
-
-
- A Cross Product Formula
-
-
- \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
- \mathbf{i} & \mathbf{j} & \mathbf{k} \\
- \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
- \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
- \end{vmatrix} \]
-
-
-
-
- The probability of getting \(k\) heads when flipping \(n\) coins is
-
-
- \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
-
-
-
-
- An Identity of Ramanujan
-
-
- \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
- 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
- {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
-
-
-
-
- A Rogers-Ramanujan Identity
-
-
- \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
- \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
-
-
-
-
- Maxwell’s Equations
-
-
- \[ \begin{aligned}
- \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
- \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
- \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
- \]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+ A Cross Product Formula
+
+ \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
+ \mathbf{i} & \mathbf{j} & \mathbf{k} \\
+ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
+ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
+ \end{vmatrix} \]
+
+
+
+ The probability of getting \(k\) heads when flipping \(n\) coins is
+
+ \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
+
+
+
+ An Identity of Ramanujan
+
+ \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
+ 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
+ {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
+
+
+
+ A Rogers-Ramanujan Identity
+
+ \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
+ \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
+
+
+
+ Maxwell’s Equations
+
+ \[ \begin{aligned}
+ \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t}
+ & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi
+ \rho \\
+ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial
+ t} & = \vec{\mathbf{0}} \\
+ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
+ \]
+
+
+
+
+ The Lorenz Equations
+
+
+ \[\begin{aligned}
+ \dot{x} & = \sigma(y-x) \\
+ \dot{y} & = \rho x - y - xz \\
+ \dot{z} & = -\beta z + xy
+ \end{aligned} \]
+
+
+
+
+ The Cauchy-Schwarz Inequality
+
+
+ \[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right)
+ \left( \sum_{k=1}^n b_k^2 \right) \]
+
+
+
+
+ A Cross Product Formula
+
+
+ \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
+ \mathbf{i} & \mathbf{j} & \mathbf{k} \\
+ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
+ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
+ \end{vmatrix} \]
+
+
+
+
+ The probability of getting \(k\) heads when flipping \(n\) coins is
+
+
+ \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
+
+
+
+
+ An Identity of Ramanujan
+
+
+ \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
+ 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
+ {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
+
+
+
+
+ A Rogers-Ramanujan Identity
+
+
+ \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
+ \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
+
+
+
+
+ Maxwell’s Equations
+
+
+ \[ \begin{aligned}
+ \nabla \times \vec{\mathbf{B}} -\, \frac1c\,
+ \frac{\partial\vec{\mathbf{E}}}{\partial t} & =
+ \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi
+ \rho \\
+ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\,
+ \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
+ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
+ \]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/test/examples/slide-backgrounds.html b/test/examples/slide-backgrounds.html
index 316c92a..6a55288 100644
--- a/test/examples/slide-backgrounds.html
+++ b/test/examples/slide-backgrounds.html
@@ -1,144 +1,149 @@
-
-
-
- reveal.js - Slide Backgrounds
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- data-background: #00ffff
-
-
-
- data-background: #bb00bb
-
-
-
- data-background: lightblue
-
-
-
-
- data-background: #ff0000
-
-
- data-background: rgba(0, 0, 0, 0.2)
-
-
- data-background: salmon
-
-
-
-
-
- Background applied to stack
-
-
- Background applied to stack
-
-
- Background applied to slide inside of stack
-
-
-
-
-
-
-
-
- Background image
- data-background-size="100px" data-background-repeat="repeat" data-background-color="#111"
-
-
-
- Same background twice (1/2)
-
-
- Same background twice (2/2)
-
-
-
-
-
-
-
-
- Same background twice vertical (1/2)
-
-
- Same background twice vertical (2/2)
-
-
-
-
- Same background from horizontal to vertical (1/3)
-
-
-
- Same background from horizontal to vertical (2/3)
-
-
- Same background from horizontal to vertical (3/3)
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+ reveal.js - Slide Backgrounds
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ data-background: #00ffff
+
+
+
+ data-background: #bb00bb
+
+
+
+ data-background: lightblue
+
+
+
+
+ data-background: #ff0000
+
+
+ data-background: rgba(0, 0, 0, 0.2)
+
+
+ data-background: salmon
+
+
+
+
+
+ Background applied to stack
+
+
+ Background applied to stack
+
+
+ Background applied to slide inside of stack
+
+
+
+
+
+
+
+
+ Background image
+ data-background-size="100px" data-background-repeat="repeat" data-background-color="#111"
+
+
+
+ Same background twice (1/2)
+
+
+ Same background twice (2/2)
+
+
+
+
+
+
+
+
+ Same background twice vertical (1/2)
+
+
+ Same background twice vertical (2/2)
+
+
+
+
+ Same background from horizontal to vertical (1/3)
+
+
+
+ Same background from horizontal to vertical (2/3)
+
+
+ Same background from horizontal to vertical (3/3)
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/test/examples/slide-transitions.html b/test/examples/slide-transitions.html
index 88119dc..74a1964 100644
--- a/test/examples/slide-transitions.html
+++ b/test/examples/slide-transitions.html
@@ -1,101 +1,102 @@
-
-
-
- reveal.js - Slide Transitions
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- data-transition: zoom
-
-
-
- data-transition: zoom-in fade-out
-
-
-
-
-
- data-transition: convex
-
-
-
- data-transition: convex-in concave-out
-
-
-
-
-
- data-transition: concave
-
-
- data-transition: convex-in fade-out
-
-
-
-
-
- data-transition: none
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+ reveal.js - Slide Transitions
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ data-transition: zoom
+
+
+
+ data-transition: zoom-in fade-out
+
+
+
+
+
+ data-transition: convex
+
+
+
+ data-transition: convex-in concave-out
+
+
+
+
+
+ data-transition: concave
+
+
+ data-transition: convex-in fade-out
+
+
+
+
+
+ data-transition: none
+
+
+
+
+
+
+
+
+
+
+
+
+
+
--
cgit v1.2.3