aboutsummaryrefslogtreecommitdiffhomepage
path: root/std/Number
diff options
context:
space:
mode:
authorMarvin Borner2023-02-24 15:36:59 +0100
committerMarvin Borner2023-02-24 15:39:24 +0100
commit1fcb81203e886b6b1e851a94c5fb301c9d33ec89 (patch)
tree492158ebbabf6fda933a969373fdf5b5d55a92ed /std/Number
parentc371838c15ab245bd9b1db3947747c431a95040e (diff)
Moved number implementations
Diffstat (limited to 'std/Number')
-rw-r--r--std/Number/Binary.bruijn252
-rw-r--r--std/Number/Ternary.bruijn453
-rw-r--r--std/Number/Unary.bruijn57
3 files changed, 762 insertions, 0 deletions
diff --git a/std/Number/Binary.bruijn b/std/Number/Binary.bruijn
new file mode 100644
index 0000000..ec62e60
--- /dev/null
+++ b/std/Number/Binary.bruijn
@@ -0,0 +1,252 @@
+# MIT License, Copyright (c) 2023 Marvin Borner
+# TODO: Use abstract representation for logic instead of listifying
+
+:import std/Combinator .
+:import std/List .
+:import std/Logic .
+
+# bit indicating a one, compatible with std/Logic
+b¹ true ⧗ Bit
+
+# bit indicating a zero, compatible with std/Logic
+b⁰ false ⧗ Bit
+
+# returns true if a bit is set
+b¹? i ⧗ Bit → Boolean
+
+:test (b¹? b¹) (true)
+:test (b¹? b⁰) (false)
+
+# returns true if a bit is unset
+b⁰? not! ⧗ Bit → Boolean
+
+:test (b⁰? b⁰) (true)
+:test (b⁰? b¹) (false)
+
+# shifts a one into a binary number
+↑¹‣ [[[[1 (3 2 1 0)]]]] ⧗ Binary → Binary
+
+:test (↑¹[[[0 2]]]) ([[[1 (0 2)]]])
+
+# shifts a zero into a binary number
+↑⁰‣ [[[[0 (3 2 1 0)]]]] ⧗ Binary → Binary
+
+:test (↑⁰(+1b)) ((+2b))
+
+# shifts a specified bit into a binary number
+up [[[[[4 1 0 (3 2 1 0)]]]]] ⧗ Bit → Binary → Binary
+
+:test (up b¹ [[[0 2]]]) ([[[1 (0 2)]]])
+:test (up b⁰ (+1b)) ((+2b))
+
+# converts a binary number to a list of bits
+list! [0 z a¹ a⁰] ⧗ Binary → (List Bit)
+ z empty
+ a¹ [b¹ : 0]
+ a⁰ [b⁰ : 0]
+
+:test (list! (+0b)) (empty)
+:test (list! (+6b)) (b⁰ : (b¹ : (b¹ : empty)))
+
+# converts a list of bits to a binary number
+binary! foldr up (+0b) ⧗ (List Bit) → Binary
+
+:test (binary! (list! (+0b))) ((+0b))
+:test (binary! (list! (+42b))) ((+42b))
+
+# strips leading 0s from a binary number
+strip [^(0 z a¹ a⁰)] ⧗ Binary → Binary
+ z (+0b) : true
+ a¹ [0 [[↑¹1 : false]]]
+ a⁰ [0 [[(0 (+0b) ↑⁰1) : 0]]]
+
+%‣ strip
+
+:test (%[[[0 2]]]) ((+0b))
+:test (%[[[1 (0 (0 (0 (0 2))))]]]) ((+1b))
+:test (%(+2b)) ((+2b))
+
+# returns true if a binary number is zero
+zero? [0 true [false] i] ⧗ Binary → Boolean
+
+=?‣ zero?
+
+:test (=?(+0b)) (true)
+:test (=?[[[0 (0 2)]]]) (true)
+:test (=?(+1b)) (false)
+
+# extracts least significant bit from a binary number
+lst [0 b⁰ [b¹] [b⁰]] ⧗ Binary → Bit
+
+:test (lst (+0b)) (b⁰)
+:test (lst (+1b)) (b¹)
+:test (lst (+42b)) (b⁰)
+
+# extracts most significant bit from a binary number
+# not really useful for binary numbers, but part of interface
+mst [=?0 b⁰ ^(<~>(list! %0))] ⧗ Binary → Bit
+
+:test (mst (+0b)) (b⁰)
+:test (mst (+1b)) (b¹)
+:test (mst (+42b)) (b¹)
+
+# extracts nth bit from a binary number
+nth …!!… ∘ list! ⧗ Binary → Number → Bit
+
+# logical and on two binary numbers
+and! binary! ∘∘ (ψ* zip-with …⋀?… list!) ⧗ Binary → Binary → Binary
+
+…⋀!… and!
+
+:test (and! (+1b) (+0b)) ((+0b))
+:test (and! (+5b) (+4b)) ((+4b))
+:test (and! (+10b) (+12b)) ((+8b))
+
+# logical or on two binary numbers
+# TODO: Fix for numbers with different length (→ zero padding?)
+or! binary! ∘∘ (ψ* zip-with …⋁?… list!) ⧗ Binary → Binary → Binary
+
+…⋁!… or!
+
+:test (or! (+10b) (+12b)) ((+14b))
+
+# :test (or! (+1b) (+0b)) ((+1b))
+# :test (or! (+5b) (+3b)) ((+7b))
+
+# converts the normal binary representation into abstract
+abstract! [0 z a¹ a⁰] ⧗ Binary → AbstractBinary
+ z (+0b)
+ a¹ [[[[1 3]]]]
+ a⁰ [[[[0 3]]]]
+
+→^‣ abstract!
+
+:test (→^(+2b)) ([[[0 [[[1 [[[2]]]]]]]]])
+
+# converts the abstracted binary representation back to normal
+normal! ω [[0 z a¹ a⁰]] ⧗ AbstractBinary → Binary
+ z (+0b)
+ a¹ [↑¹([3 3 0] 0)]
+ a⁰ [↑⁰([3 3 0] 0)]
+
+→_‣ normal!
+
+:test (→_[[[0 [[[1 [[[2]]]]]]]]]) ((+2b))
+
+# returns true if two binary numbers are equal
+# → ignores leading 0s!
+# also: ⋀?‣ ∘∘ (ψ* zip-with xnor? list!)
+eq? [[abs 1 →^0]] ⧗ Binary → Binary → Boolean
+ abs [0 z a¹ a⁰]
+ z [=?(→_0)]
+ a¹ [[0 false [2 0] [false]]]
+ a⁰ [[0 (1 0) [false] [2 0]]]
+
+…=?… eq?
+
+:test ((+0b) =? (+0b)) (true)
+:test ([[[1 (0 2)]]] =? [[[1 (0 2)]]]) (true)
+:test ([[[1 2]]] =? (+2b)) (false)
+
+# returns true if two binary numbers are not equal
+not-eq? not! ∘∘ eq? ⧗ Binary → Binary → Boolean
+
+…≠?… not-eq?
+
+:test ((+0b) ≠? (+0b)) (false)
+:test ([[[1 (0 2)]]] ≠? [[[1 (0 2)]]]) (false)
+:test ([[[1 (0 2)]]] ≠? (+2b)) (true)
+
+# adds 1 to a binary number (can introduce leading 0s)
+inc [~(0 z a¹ a⁰)] ⧗ Binary → Binary
+ z (+0b) : (+1b)
+ a¹ [0 [[↑¹1 : ↑⁰0]]]
+ a⁰ [0 [[↑⁰1 : ↑¹1]]]
+
+++‣ inc
+
+:test (++(+0b)) ((+1b))
+:test (++(+2b)) ((+3b))
+
+# subs 1 from a binary number (can introduce leading 0s)
+dec [~(0 z a¹ a⁰)] ⧗ Binary → Binary
+ z (+0b) : (+0b)
+ a¹ [0 [[↑¹1 : ↑⁰1]]]
+ a⁰ [0 [[↑⁰1 : ↑¹0]]]
+
+--‣ dec
+
+:test (--(+0b)) ((+0b))
+:test (--(+1b)) ([[[0 2]]])
+:test (--(+3b)) ((+2b))
+
+# flips the bits of a binary number (1's complement)
+complement [[[[3 2 0 1]]]] ⧗ Binary → Binary
+
+~‣ complement
+
+:test (~(+0b) =? (+0b)) (true)
+:test (~(+1b) =? (+0b)) (true)
+:test (~(+42b)) ([[[1 (0 (1 (0 (1 (0 2)))))]]])
+
+# inverts a binary number by complementing and incrementing (2's complement)
+# don't forget to pad the number with zeroes if needed
+invert ++‣ ∘ ~‣ ⧗ Binary → Binary
+
+-‣ invert
+
+:test (-(+0b)) ((+1b))
+:test (-(+1b)) ((+1b))
+
+# pads a binary number with zeroes until its as long a another binary number
+# TODO: this could probably be done without list magic
+pad [[binary! (pad-right ∀(list! %1) b⁰ (list! 0))]] ⧗ Binary → Binary → Binary
+
+:test (pad (+5b) [[[1 2]]]) ([[[1 (0 (0 2))]]])
+
+# adds two binary numbers (can introduce leading 0s)
+# second argument gets abstracted (performance)
+add [[abs 1 →^0]] ⧗ Binary → Binary → Binary
+ abs [c (0 z a¹ a⁰)]
+ c¹ [1 ↑⁰(3 0 b¹) ↑¹(3 0 b⁰)]
+ a¹ [[[1 (c¹ 1) c¹' c¹]]]
+ c¹' [up 1 (3 0 b¹)]
+ a⁰ [[[1 (c⁰ 1) c¹ c⁰]]]
+ c⁰ [up 1 (3 0 b⁰)]
+ z [[0 ++(→_1) →_1]]
+ c [[1 0 b⁰]]
+
+…+… add
+
+:test ((+0b) + (+0b) =? (+0b)) (true)
+:test ((+0b) + (+3b) =? (+3b)) (true)
+:test ((+1b) + (+2b) =? (+3b)) (true)
+:test ((+42b) + (+1b) =? (+43b)) (true)
+:test ((+1b) + (+42b) =? (+43b)) (true)
+
+# subs two binary numbers (can introduce leading 0s)
+# second argument gets abstracted (performance)
+# TODO: fix sub*; implementation is completely wrong
+sub* [[abs 1 →^0]] ⧗ Binary → Binary → Binary
+ abs [c (0 z a¹ a⁰)]
+ c¹ [1 ↑¹(3 0 b⁰) ↑¹(3 0 b⁰)]
+ a¹ [[[1 (c¹ 1) c¹' c¹]]]
+ c¹ [1 ↑⁰(3 0 b¹) ↑¹(3 0 b⁰)]
+ c¹' [1 ↑¹(3 0 b⁰) ↑¹(3 0 b⁰)]
+ a⁰ [[[1 (c⁰ 1) c⁰' c⁰]]]
+ c⁰ [1 ↑¹(3 0 b⁰) ↑⁰(3 0 b⁰)]
+ c⁰' [1 (3 0 b⁰) ↑¹(3 0 b¹)]
+ z [[0 --(→_1) →_1]]
+ c [[1 0 b⁰]]
+
+# subs two binary numbers
+# uses addition but with two's complement
+# TODO: isn't very performant ⇒ replace with sub*
+# TODO: gives wrong results if b>=a in a-b
+sub [[-((pad 1 0) + -(pad 0 1))]] ⧗ Binary → Binary → Binary
+
+…-… sub
+
+:test ((+42b) - (+12b) =? (+30b)) (true)
+:test ((+3b) - (+0b) =? (+3b)) (true)
+:test ((+3b) - (+2b) =? (+1b)) (true)
diff --git a/std/Number/Ternary.bruijn b/std/Number/Ternary.bruijn
new file mode 100644
index 0000000..dfed84c
--- /dev/null
+++ b/std/Number/Ternary.bruijn
@@ -0,0 +1,453 @@
+# MIT License, Copyright (c) 2022 Marvin Borner
+# This file defines the most basic mathematical operations
+# → refer to std/Math for more advanced functions
+# Heavily inspired by the works of T.Æ. Mogensen and Douglas W. Jones (see refs in README)
+
+:import std/Combinator .
+:import std/Logic .
+:import std/Pair .
+
+# negative trit indicating coeffecient of (-1)
+t⁻ [[[2]]] ⧗ Trit
+
+# positive trit indicating coeffecient of (+1)
+t⁺ [[[1]]] ⧗ Trit
+
+# zero trit indicating coeffecient of 0
+t⁰ [[[0]]] ⧗ Trit
+
+# returns true if a trit is negative
+t⁻? [0 true false false] ⧗ Trit → Boolean
+
+:test (t⁻? t⁻) (true)
+:test (t⁻? t⁺) (false)
+:test (t⁻? t⁰) (false)
+
+# returns true if a trit is positive
+t⁺? [0 false true false] ⧗ Trit → Boolean
+
+:test (t⁺? t⁻) (false)
+:test (t⁺? t⁺) (true)
+:test (t⁺? t⁰) (false)
+
+# returns true if a trit is zero
+t⁰? [0 false false true] ⧗ Trit → Boolean
+
+:test (t⁰? t⁻) (false)
+:test (t⁰? t⁺) (false)
+:test (t⁰? t⁰) (true)
+
+# shifts a negative trit into a balanced ternary number
+↑⁻‣ [[[[[2 (4 3 2 1 0)]]]]] ⧗ Number → Number
+
+:test (↑⁻(+0)) ((-1))
+:test (↑⁻(-1)) ((-4))
+:test (↑⁻(+42)) ((+125))
+
+# shifts a positive trit into a balanced ternary number
+↑⁺‣ [[[[[1 (4 3 2 1 0)]]]]] ⧗ Number → Number
+
+:test (↑⁺(+0)) ((+1))
+:test (↑⁺(-1)) ((-2))
+:test (↑⁺(+42)) ((+127))
+
+# shifts a zero trit into a balanced ternary number
+↑⁰‣ [[[[[0 (4 3 2 1 0)]]]]] ⧗ Number → Number
+
+:test (↑⁰(+0)) ([[[[0 3]]]])
+:test (↑⁰(+1)) ((+3))
+:test (↑⁰(+42)) ((+126))
+
+# shifts a specified trit into a balanced ternary number
+up [[[[[[5 2 1 0 (4 3 2 1 0)]]]]]] ⧗ Trit → Number → Number
+
+:test (up t⁻ (+42)) (↑⁻(+42))
+:test (up t⁺ (+42)) (↑⁺(+42))
+:test (up t⁰ (+42)) (↑⁰(+42))
+
+# infinity
+# WARNING: using this mostly results in undefined behavior! (TODO?)
+infty z [[[[[1 (4 1)]]]]] ⧗ Number
+
+# negates a balanced ternary number
+negate [[[[[4 3 1 2 0]]]]] ⧗ Number → Number
+
+-‣ negate
+
+:test (-(+0)) ((+0))
+:test (-(-1)) ((+1))
+:test (-(+42)) ((-42))
+
+# converts a balanced ternary number to a list of trits
+list! [0 z a⁻ a⁺ a⁰] ⧗ Number → List
+ z [[0]]
+ a⁻ [t⁻ : 0]
+ a⁺ [t⁺ : 0]
+ a⁰ [t⁰ : 0]
+
+# TODO: Tests!
+
+# strips leading 0s from a balanced ternary number
+strip [^(0 z a⁻ a⁺ a⁰)] ⧗ Number → Number
+ z (+0) : true
+ a⁻ [0 [[↑⁻1 : false]]]
+ a⁺ [0 [[↑⁺1 : false]]]
+ a⁰ [0 [[(0 (+0) ↑⁰1) : 0]]]
+
+%‣ strip
+
+:test (%[[[[0 3]]]]) ((+0))
+:test (%[[[[2 (0 (0 (0 (0 3))))]]]]) ((-1))
+:test (%(+42)) ((+42))
+
+# returns true if balanced ternary number is zero
+zero? [0 true [false] [false] i] ⧗ Number → Boolean
+
+=?‣ zero?
+
+:test (=?(+0)) (true)
+:test (=?(-1)) (false)
+:test (=?(+1)) (false)
+:test (=?(+42)) (false)
+
+# returns true if balanced ternary number is not
+not-zero? [0 false [true] [true] i] ⧗ Number → Boolean
+
+≠?‣ not-zero?
+
+:test (≠?(+0)) (false)
+:test (≠?(-1)) (true)
+:test (≠?(+1)) (true)
+:test (≠?(+42)) (true)
+
+# extracts least significant trit from a balanced ternary number
+lst [0 t⁰ [t⁻] [t⁺] [t⁰]] ⧗ Number → Trit
+
+:test (lst (-1)) (t⁻)
+:test (lst (+0)) (t⁰)
+:test (lst (+1)) (t⁺)
+:test (lst (+42)) (t⁰)
+
+# extracts most significant trit from a balanced ternary number
+# <~>/<>? are hardcoded because list import would be recursive (TODO?)
+# while this looks incredibly inefficient it's actually fairly fast because laziness
+# TODO: find way of removing requirement of stripping first
+# (or better solution in general)
+mst [=?0 t⁰ ^(<~>(list! %0))] ⧗ Number → Trit
+ <~>‣ z [[[[<>?0 1 (3 2 (2 1 ^0) ~0)]]]] f false
+ <>?‣ [0 [[[false]]] true]
+
+:test (mst (-1)) (t⁻)
+:test (mst (+0)) (t⁰)
+:test (mst (+1)) (t⁺)
+:test (mst (+42)) (t⁺)
+
+# returns true if balanced ternary number is negative
+negative? [t⁻? (mst 0)] ⧗ Number → Boolean
+
+<?‣ negative?
+
+:test (<?(+0)) (false)
+:test (<?(-1)) (true)
+:test (<?(+1)) (false)
+:test (<?(+42)) (false)
+
+# returns true if balanced ternary number is positive
+positive? [t⁺? (mst 0)] ⧗ Number → Boolean
+
+>?‣ positive?
+
+:test (>?(+0)) (false)
+:test (>?(-1)) (false)
+:test (>?(+1)) (true)
+:test (>?(+42)) (true)
+
+# converts the normal balanced ternary representation into abstract
+# infinity can't be abstracted in finite time
+# → the abstract representation is used in eq?/add/sub/mul
+abstract! [0 z a⁻ a⁺ a⁰] ⧗ Number → AbstractNumber
+ z (+0)
+ a⁻ [[[[[2 4]]]]]
+ a⁺ [[[[[1 4]]]]]
+ a⁰ [[[[[0 4]]]]]
+
+→^‣ abstract!
+
+:test (→^(-3)) ([[[[0 [[[[2 [[[[3]]]]]]]]]]]])
+:test (→^(+0)) ([[[[3]]]])
+:test (→^(+3)) ([[[[0 [[[[1 [[[[3]]]]]]]]]]]])
+
+# converts the abstracted balanced ternary representation back to normal
+normal! ω [[0 z a⁻ a⁺ a⁰]] ⧗ AbstractNumber → Number
+ z (+0)
+ a⁻ [↑⁻([3 3 0] 0)]
+ a⁺ [↑⁺([3 3 0] 0)]
+ a⁰ [↑⁰([3 3 0] 0)]
+
+→_‣ normal!
+
+:test (→_[[[[3]]]]) ((+0))
+:test (→_(→^(+42))) ((+42))
+:test (→_(→^(-42))) ((-42))
+
+# returns true if two balanced ternary numbers are equal
+# → ignores leading 0s!
+eq? [[abs 1 →^0]] ⧗ Number → Number → Boolean
+ abs [0 z a⁻ a⁺ a⁰]
+ z [=?(→_0)]
+ a⁻ [[0 false [2 0] [false] [false]]]
+ a⁺ [[0 false [false] [2 0] [false]]]
+ a⁰ [[0 (1 0) [false] [false] [2 0]]]
+
+…=?… eq?
+
+# returns true if two balanced ternary numbers are not equal
+not-eq? not! ∘∘ eq? ⧗ Number → Number → Boolean
+
+…≠?… not-eq?
+
+:test ((-42) =? (-42)) (true)
+:test ((-1) =? (-1)) (true)
+:test ((-1) =? (+0)) (false)
+:test ((+0) =? (+0)) (true)
+:test ((+1) =? (+0)) (false)
+:test ((+1) =? (+1)) (true)
+:test ((+42) =? (+42)) (true)
+:test ([[[[(1 (0 (0 (0 (0 3)))))]]]] =? (+1)) (true)
+:test ((+1) ≠? (+0)) (true)
+:test ((-42) ≠? (+42)) (true)
+
+# I believe Mogensen's Paper has an error in its inc/dec/add/mul/eq definitions.
+# They use 3 instead of 2 abstractions in the functions, also we use switched
+# +/0 in comparison to their implementation, yet the order of neg/pos/zero is
+# the same. Something's weird.
+
+# adds (+1) to a balanced ternary number (can introduce leading 0s)
+inc [~(0 z a⁻ a⁺ a⁰)] ⧗ Number → Number
+ z (+0) : (+1)
+ a⁻ [0 [[↑⁻1 : ↑⁰1]]]
+ a⁺ [0 [[↑⁺1 : ↑⁻0]]]
+ a⁰ [0 [[↑⁰1 : ↑⁺1]]]
+
+++‣ inc
+
+:test ((++(-42)) =? (-41)) (true)
+:test ((++(-1)) =? (+0)) (true)
+:test ((++(+0)) =? (+1)) (true)
+:test ((++(++(++(++(++(+0)))))) =? (+5)) (true)
+:test ((++(+42)) =? (+43)) (true)
+
+# subs (+1) from a balanced ternary number (can introduce leading 0s)
+dec [~(0 z a⁻ a⁺ a⁰)] ⧗ Number → Number
+ z (+0) : (-1)
+ a⁻ [0 [[↑⁻1 : ↑⁺0]]]
+ a⁺ [0 [[↑⁺1 : ↑⁰1]]]
+ a⁰ [0 [[↑⁰1 : ↑⁻1]]]
+
+--‣ dec
+
+:test ((--(-42)) =? (-43)) (true)
+:test ((--(+0)) =? (-1)) (true)
+:test ((--(--(--(--(--(+5)))))) =? (+0)) (true)
+:test ((--(+1)) =? (+0)) (true)
+:test ((--(+42)) =? (+41)) (true)
+
+# adds two balanced ternary numbers (can introduce leading 0s)
+# second argument gets abstracted (performance)
+add [[abs 1 →^0]] ⧗ Number → Number → Number
+ abs [c (0 z a⁻ a⁺ a⁰)]
+ b⁻ [1 ↑⁺(3 0 t⁻) ↑⁰(3 0 t⁰) ↑⁻(3 0 t⁰)]
+ b⁰ [up 1 (3 0 t⁰)]
+ b⁺ [1 ↑⁰(3 0 t⁰) ↑⁻(3 0 t⁺) ↑⁺(3 0 t⁰)]
+ a⁻ [[[1 (b⁻ 1) b⁻' b⁰ b⁻]]]
+ b⁻' [1 ↑⁰(3 0 t⁻) ↑⁻(3 0 t⁰) ↑⁺(3 0 t⁻)]
+ a⁺ [[[1 (b⁺ 1) b⁰ b⁺' b⁺]]]
+ b⁺' [1 ↑⁺(3 0 t⁰) ↑⁰(3 0 t⁺) ↑⁻(3 0 t⁺)]
+ a⁰ [[[1 (b⁰ 1) b⁻ b⁺ b⁰]]]
+ z [[0 --(→_1) ++(→_1) →_1]]
+ c [[1 0 t⁰]]
+
+…+… add
+
+:test ((-42) + (-1) =? (-43)) (true)
+:test ((-5) + (+6) =? (+1)) (true)
+:test ((-1) + (+0) =? (-1)) (true)
+:test ((+0) + (+0) =? (+0)) (true)
+:test ((+1) + (+2) =? (+3)) (true)
+:test ((+42) + (+1) =? (+43)) (true)
+
+# subs two balanced ternary numbers (can introduce leading 0s)
+# second argument gets abstracted (performance)
+sub [[1 + -0]] ⧗ Number → Number → Number
+
+…-… sub
+
+:test ((-42) - (-1) =? (-41)) (true)
+:test ((-5) - (+6) =? (-11)) (true)
+:test ((-1) - (+0) =? (-1)) (true)
+:test ((+0) - (+0) =? (+0)) (true)
+:test ((+1) - (+2) =? (-1)) (true)
+:test ((+42) - (+1) =? (+41)) (true)
+
+# returns true if number is greater than other number
+# larger numbers should be second argument (performance)
+gre? [[>?(1 - 0)]] ⧗ Number → Number → Boolean
+
+…>?… gre?
+
+:test ((+1) >? (+2)) (false)
+:test ((+2) >? (+2)) (false)
+:test ((+3) >? (+2)) (true)
+
+# returns true if number is less than other number
+# smaller numbers should be second argument (performance)
+les? \gre? ⧗ Number → Number → Boolean
+
+…<?… les?
+
+:test ((+1) <? (+2)) (true)
+:test ((+2) <? (+2)) (false)
+:test ((+3) <? (+2)) (false)
+
+# returns true if number is less than or equal to other number
+# smaller numbers should be second argument (performance)
+leq? [[¬(1 >? 0)]] ⧗ Number → Number → Boolean
+
+…≤?… leq?
+
+:test ((+1) ≤? (+2)) (true)
+:test ((+2) ≤? (+2)) (true)
+:test ((+3) ≤? (+2)) (false)
+
+# returns true if number is greater than or equal to other number
+# smaller numbers should be second argument (performance)
+geq? \leq? ⧗ Number → Number → Boolean
+
+…≥?… geq?
+
+:test ((+1) ≥? (+2)) (false)
+:test ((+2) ≥? (+2)) (true)
+:test ((+3) ≥? (+2)) (true)
+
+# negates a balanced ternary number if <0
+abs [<?0 -0 0] ⧗ Number → Number
+
+|‣ abs
+
+:test (|(+0)) ((+0))
+:test (|(-1)) ((+1))
+:test (|(+42)) ((+42))
+
+# apply a function n times to a value
+# ~> substitute church numbers
+apply z [[[rec]]] ⧗ Number → (a → a) → a → a
+ rec =?1 case-end case-apply
+ case-apply 0 ∘ (2 --1 0)
+ case-end i
+
+:test (apply (+5) ++‣ (+3)) ((+8))
+
+# muls two balanced ternary numbers (can introduce leading 0s)
+mul [[1 z a⁻ a⁺ a⁰]] ⧗ Number → Number → Number
+ z (+0)
+ a⁻ [↑⁰0 - 1]
+ a⁺ [↑⁰0 + 1]
+ a⁰ [↑⁰0]
+
+…⋅… mul
+
+:test ((+42) ⋅ (+0) =? (+0)) (true)
+:test ((-1) ⋅ (+42) =? (-42)) (true)
+:test ((+3) ⋅ (+11) =? (+33)) (true)
+:test ((+42) ⋅ (-4) =? (-168)) (true)
+
+# divs a balanced ternary number by three (rshifts least significant trit)
+div³ [~(0 z a⁻ a⁺ a⁰)] ⧗ Number → Number
+ z (+0) : (+0)
+ a⁻ [0 [[↑⁻1 : 1]]]
+ a⁺ [0 [[↑⁺1 : 1]]]
+ a⁰ [0 [[↑⁰1 : 1]]]
+
+/³‣ div³
+
+:test (/³(+6)) ((+2))
+:test (/³(-6)) ((-2))
+:test (/³(+5)) ((+2))
+
+# divs a balanced ternary number by two (essentially binary >>1)
+div² [z [[[[rec]]]] (+0) 0 0] ⧗ Number → Number
+ rec =?1 case-end case-div
+ case-div 3 /³(2 + 0) /³1 0
+ case-end 2
+
+/²‣ div²
+
+:test (/²(+6)) ((+3))
+:test (/²(-6)) ((-3))
+:test (/²(+5)) ((+2))
+
+# manually counts how many times a balanced ternary number fits into another one
+# TODO: quadratic approximation?
+# TODO: fix for negative numbers
+brute-div \[z [[[[[rec]]]]] (+0) 0 0] ⧗ Number → Number → Number
+ rec (2 >? 0) case-end case-count
+ case-count 4 ++3 (2 + 1) 1 0
+ case-end 3
+
+…/!… brute-div
+
+:test ((+4) /! (+2)) ((+2))
+:test ((+4) /! (+4)) ((+1))
+:test ((+4) /! (+5)) ((+0))
+
+# TODO: fix for negative numbers
+brute-mod \[z [[[[[rec]]]]] (+0) 0 0] ⧗ Number → Number → Number
+ rec (2 >? 0) case-end case-count
+ case-count 4 ++3 (2 + 1) 1 0
+ case-end 0 - (3 ⋅ 1)
+
+…%!… brute-mod
+
+# finds quotient and remainder using long division
+# WARNING: don't use; incorrect and slow
+# TODO: faster algorithm
+# dividend -> divisor -> (quot, rem)
+# 0 divisor, 1 dividend, 2 (quot, rem)
+# align: (quot, divisor)
+quot-rem [[z [[[[rec]]]] ((+1) : (+0)) 1 0]] ⧗ Number → Number → (Pair Number Number)
+ rec (1 =? 0) case-eq ((1 <? 0) case-les case-div)
+ case-div calc (z [[[align]]] ^2 0)
+ align (0 ≤? 4) (1 : 0) (2 ↑⁰1 ↑⁰0)
+ calc [final (4 (^0 : ~3) (2 - ~0) 1)]
+ final [(^4 + ^0) : (~4 + ~0)]
+ case-eq (+0) : (+1)
+ case-les (+1) : 1
+
+# divs two balanced ternary numbers
+# WARNING: don't use; incorrect and slow
+div ^‣ ∘∘ quot-rem ⧗ Number → Number
+
+…/… div
+
+# returns remainder of integer division
+# WARNING: don't use; incorrect and slow
+mod ~‣ ∘∘ quot-rem ⧗ Number → Number
+
+…%… mod
+
+# returns max number of two
+max [[(1 ≤? 0) 0 1]] ⧗ Number → Number → Number
+
+:test (max (+5) (+2)) ((+5))
+
+# returns min number of two
+min [[(1 ≤? 0) 1 0]] ⧗ Number → Number → Number
+
+:test (min (+5) (+2)) ((+2))
+
+# clamps a number between two numbers
+clamp [[[min 1 (max 0 2)]]] ⧗ Number → Number → Number
+
+:test (clamp (+0) (+5) (+3)) ((+3))
+:test (clamp (+0) (+5) (-2)) ((+0))
+:test (clamp (+0) (+5) (+7)) ((+5))
diff --git a/std/Number/Unary.bruijn b/std/Number/Unary.bruijn
new file mode 100644
index 0000000..cf72e3b
--- /dev/null
+++ b/std/Number/Unary.bruijn
@@ -0,0 +1,57 @@
+# MIT License, Copyright (c) 2022 Marvin Borner
+# classic Church style numerals
+
+:import std/Logic .
+
+zero [[0]]
+
+# returns true if a unary number is zero
+zero? [0 [[[0]]] [[1]]] ⧗ Unary → Boolean
+
+=?‣ zero?
+
+:test (=?(+0u)) (true)
+:test (=?(+42u)) (false)
+
+# adds 1 to a unary number
+inc [[[1 (2 1 0)]]] ⧗ Unary → Unary
+
+++‣ inc
+
+:test (++(+0u)) ((+1u))
+:test (++(+1u)) ((+2u))
+:test (++(+42u)) ((+43u))
+
+# subs 1 from a unary number
+dec [[[2 [[0 (1 3)]] [1] [0]]]] ⧗ Unary → Unary
+
+--‣ dec
+
+:test (--(+0u)) ((+0u))
+:test (--(+1u)) ((+0u))
+:test (--(+42u)) ((+41u))
+
+# adds two unary numbers
+add [[[[3 1 (2 1 0)]]]] ⧗ Unary → Unary → Unary
+
+…+… add
+
+:test ((+0u) + (+2u)) ((+2u))
+:test ((+5u) + (+3u)) ((+8u))
+
+# muls two unary numbers
+mul [[[2 (1 0)]]] ⧗ Unary → Unary → Unary
+
+…⋅… mul
+
+:test ((+0u) ⋅ (+2u)) ((+0u))
+:test ((+2u) ⋅ (+3u)) ((+6u))
+
+# exponentiates two unary numbers
+# gives 1 if exponent is 0
+exp [[0 1]] ⧗ Unary → Unary → Unary
+
+…^… exp
+
+:test ((+1u) ^ (+0u)) ((+1u))
+:test ((+2u) ^ (+3u)) ((+8u))