diff options
author | Marvin Borner | 2023-02-24 15:36:59 +0100 |
---|---|---|
committer | Marvin Borner | 2023-02-24 15:39:24 +0100 |
commit | 1fcb81203e886b6b1e851a94c5fb301c9d33ec89 (patch) | |
tree | 492158ebbabf6fda933a969373fdf5b5d55a92ed /std/Number | |
parent | c371838c15ab245bd9b1db3947747c431a95040e (diff) |
Moved number implementations
Diffstat (limited to 'std/Number')
-rw-r--r-- | std/Number/Binary.bruijn | 252 | ||||
-rw-r--r-- | std/Number/Ternary.bruijn | 453 | ||||
-rw-r--r-- | std/Number/Unary.bruijn | 57 |
3 files changed, 762 insertions, 0 deletions
diff --git a/std/Number/Binary.bruijn b/std/Number/Binary.bruijn new file mode 100644 index 0000000..ec62e60 --- /dev/null +++ b/std/Number/Binary.bruijn @@ -0,0 +1,252 @@ +# MIT License, Copyright (c) 2023 Marvin Borner +# TODO: Use abstract representation for logic instead of listifying + +:import std/Combinator . +:import std/List . +:import std/Logic . + +# bit indicating a one, compatible with std/Logic +b¹ true ⧗ Bit + +# bit indicating a zero, compatible with std/Logic +b⁰ false ⧗ Bit + +# returns true if a bit is set +b¹? i ⧗ Bit → Boolean + +:test (b¹? b¹) (true) +:test (b¹? b⁰) (false) + +# returns true if a bit is unset +b⁰? not! ⧗ Bit → Boolean + +:test (b⁰? b⁰) (true) +:test (b⁰? b¹) (false) + +# shifts a one into a binary number +↑¹‣ [[[[1 (3 2 1 0)]]]] ⧗ Binary → Binary + +:test (↑¹[[[0 2]]]) ([[[1 (0 2)]]]) + +# shifts a zero into a binary number +↑⁰‣ [[[[0 (3 2 1 0)]]]] ⧗ Binary → Binary + +:test (↑⁰(+1b)) ((+2b)) + +# shifts a specified bit into a binary number +up [[[[[4 1 0 (3 2 1 0)]]]]] ⧗ Bit → Binary → Binary + +:test (up b¹ [[[0 2]]]) ([[[1 (0 2)]]]) +:test (up b⁰ (+1b)) ((+2b)) + +# converts a binary number to a list of bits +list! [0 z a¹ a⁰] ⧗ Binary → (List Bit) + z empty + a¹ [b¹ : 0] + a⁰ [b⁰ : 0] + +:test (list! (+0b)) (empty) +:test (list! (+6b)) (b⁰ : (b¹ : (b¹ : empty))) + +# converts a list of bits to a binary number +binary! foldr up (+0b) ⧗ (List Bit) → Binary + +:test (binary! (list! (+0b))) ((+0b)) +:test (binary! (list! (+42b))) ((+42b)) + +# strips leading 0s from a binary number +strip [^(0 z a¹ a⁰)] ⧗ Binary → Binary + z (+0b) : true + a¹ [0 [[↑¹1 : false]]] + a⁰ [0 [[(0 (+0b) ↑⁰1) : 0]]] + +%‣ strip + +:test (%[[[0 2]]]) ((+0b)) +:test (%[[[1 (0 (0 (0 (0 2))))]]]) ((+1b)) +:test (%(+2b)) ((+2b)) + +# returns true if a binary number is zero +zero? [0 true [false] i] ⧗ Binary → Boolean + +=?‣ zero? + +:test (=?(+0b)) (true) +:test (=?[[[0 (0 2)]]]) (true) +:test (=?(+1b)) (false) + +# extracts least significant bit from a binary number +lst [0 b⁰ [b¹] [b⁰]] ⧗ Binary → Bit + +:test (lst (+0b)) (b⁰) +:test (lst (+1b)) (b¹) +:test (lst (+42b)) (b⁰) + +# extracts most significant bit from a binary number +# not really useful for binary numbers, but part of interface +mst [=?0 b⁰ ^(<~>(list! %0))] ⧗ Binary → Bit + +:test (mst (+0b)) (b⁰) +:test (mst (+1b)) (b¹) +:test (mst (+42b)) (b¹) + +# extracts nth bit from a binary number +nth …!!… ∘ list! ⧗ Binary → Number → Bit + +# logical and on two binary numbers +and! binary! ∘∘ (ψ* zip-with …⋀?… list!) ⧗ Binary → Binary → Binary + +…⋀!… and! + +:test (and! (+1b) (+0b)) ((+0b)) +:test (and! (+5b) (+4b)) ((+4b)) +:test (and! (+10b) (+12b)) ((+8b)) + +# logical or on two binary numbers +# TODO: Fix for numbers with different length (→ zero padding?) +or! binary! ∘∘ (ψ* zip-with …⋁?… list!) ⧗ Binary → Binary → Binary + +…⋁!… or! + +:test (or! (+10b) (+12b)) ((+14b)) + +# :test (or! (+1b) (+0b)) ((+1b)) +# :test (or! (+5b) (+3b)) ((+7b)) + +# converts the normal binary representation into abstract +abstract! [0 z a¹ a⁰] ⧗ Binary → AbstractBinary + z (+0b) + a¹ [[[[1 3]]]] + a⁰ [[[[0 3]]]] + +→^‣ abstract! + +:test (→^(+2b)) ([[[0 [[[1 [[[2]]]]]]]]]) + +# converts the abstracted binary representation back to normal +normal! ω [[0 z a¹ a⁰]] ⧗ AbstractBinary → Binary + z (+0b) + a¹ [↑¹([3 3 0] 0)] + a⁰ [↑⁰([3 3 0] 0)] + +→_‣ normal! + +:test (→_[[[0 [[[1 [[[2]]]]]]]]]) ((+2b)) + +# returns true if two binary numbers are equal +# → ignores leading 0s! +# also: ⋀?‣ ∘∘ (ψ* zip-with xnor? list!) +eq? [[abs 1 →^0]] ⧗ Binary → Binary → Boolean + abs [0 z a¹ a⁰] + z [=?(→_0)] + a¹ [[0 false [2 0] [false]]] + a⁰ [[0 (1 0) [false] [2 0]]] + +…=?… eq? + +:test ((+0b) =? (+0b)) (true) +:test ([[[1 (0 2)]]] =? [[[1 (0 2)]]]) (true) +:test ([[[1 2]]] =? (+2b)) (false) + +# returns true if two binary numbers are not equal +not-eq? not! ∘∘ eq? ⧗ Binary → Binary → Boolean + +…≠?… not-eq? + +:test ((+0b) ≠? (+0b)) (false) +:test ([[[1 (0 2)]]] ≠? [[[1 (0 2)]]]) (false) +:test ([[[1 (0 2)]]] ≠? (+2b)) (true) + +# adds 1 to a binary number (can introduce leading 0s) +inc [~(0 z a¹ a⁰)] ⧗ Binary → Binary + z (+0b) : (+1b) + a¹ [0 [[↑¹1 : ↑⁰0]]] + a⁰ [0 [[↑⁰1 : ↑¹1]]] + +++‣ inc + +:test (++(+0b)) ((+1b)) +:test (++(+2b)) ((+3b)) + +# subs 1 from a binary number (can introduce leading 0s) +dec [~(0 z a¹ a⁰)] ⧗ Binary → Binary + z (+0b) : (+0b) + a¹ [0 [[↑¹1 : ↑⁰1]]] + a⁰ [0 [[↑⁰1 : ↑¹0]]] + +--‣ dec + +:test (--(+0b)) ((+0b)) +:test (--(+1b)) ([[[0 2]]]) +:test (--(+3b)) ((+2b)) + +# flips the bits of a binary number (1's complement) +complement [[[[3 2 0 1]]]] ⧗ Binary → Binary + +~‣ complement + +:test (~(+0b) =? (+0b)) (true) +:test (~(+1b) =? (+0b)) (true) +:test (~(+42b)) ([[[1 (0 (1 (0 (1 (0 2)))))]]]) + +# inverts a binary number by complementing and incrementing (2's complement) +# don't forget to pad the number with zeroes if needed +invert ++‣ ∘ ~‣ ⧗ Binary → Binary + +-‣ invert + +:test (-(+0b)) ((+1b)) +:test (-(+1b)) ((+1b)) + +# pads a binary number with zeroes until its as long a another binary number +# TODO: this could probably be done without list magic +pad [[binary! (pad-right ∀(list! %1) b⁰ (list! 0))]] ⧗ Binary → Binary → Binary + +:test (pad (+5b) [[[1 2]]]) ([[[1 (0 (0 2))]]]) + +# adds two binary numbers (can introduce leading 0s) +# second argument gets abstracted (performance) +add [[abs 1 →^0]] ⧗ Binary → Binary → Binary + abs [c (0 z a¹ a⁰)] + c¹ [1 ↑⁰(3 0 b¹) ↑¹(3 0 b⁰)] + a¹ [[[1 (c¹ 1) c¹' c¹]]] + c¹' [up 1 (3 0 b¹)] + a⁰ [[[1 (c⁰ 1) c¹ c⁰]]] + c⁰ [up 1 (3 0 b⁰)] + z [[0 ++(→_1) →_1]] + c [[1 0 b⁰]] + +…+… add + +:test ((+0b) + (+0b) =? (+0b)) (true) +:test ((+0b) + (+3b) =? (+3b)) (true) +:test ((+1b) + (+2b) =? (+3b)) (true) +:test ((+42b) + (+1b) =? (+43b)) (true) +:test ((+1b) + (+42b) =? (+43b)) (true) + +# subs two binary numbers (can introduce leading 0s) +# second argument gets abstracted (performance) +# TODO: fix sub*; implementation is completely wrong +sub* [[abs 1 →^0]] ⧗ Binary → Binary → Binary + abs [c (0 z a¹ a⁰)] + c¹ [1 ↑¹(3 0 b⁰) ↑¹(3 0 b⁰)] + a¹ [[[1 (c¹ 1) c¹' c¹]]] + c¹ [1 ↑⁰(3 0 b¹) ↑¹(3 0 b⁰)] + c¹' [1 ↑¹(3 0 b⁰) ↑¹(3 0 b⁰)] + a⁰ [[[1 (c⁰ 1) c⁰' c⁰]]] + c⁰ [1 ↑¹(3 0 b⁰) ↑⁰(3 0 b⁰)] + c⁰' [1 (3 0 b⁰) ↑¹(3 0 b¹)] + z [[0 --(→_1) →_1]] + c [[1 0 b⁰]] + +# subs two binary numbers +# uses addition but with two's complement +# TODO: isn't very performant ⇒ replace with sub* +# TODO: gives wrong results if b>=a in a-b +sub [[-((pad 1 0) + -(pad 0 1))]] ⧗ Binary → Binary → Binary + +…-… sub + +:test ((+42b) - (+12b) =? (+30b)) (true) +:test ((+3b) - (+0b) =? (+3b)) (true) +:test ((+3b) - (+2b) =? (+1b)) (true) diff --git a/std/Number/Ternary.bruijn b/std/Number/Ternary.bruijn new file mode 100644 index 0000000..dfed84c --- /dev/null +++ b/std/Number/Ternary.bruijn @@ -0,0 +1,453 @@ +# MIT License, Copyright (c) 2022 Marvin Borner +# This file defines the most basic mathematical operations +# → refer to std/Math for more advanced functions +# Heavily inspired by the works of T.Æ. Mogensen and Douglas W. Jones (see refs in README) + +:import std/Combinator . +:import std/Logic . +:import std/Pair . + +# negative trit indicating coeffecient of (-1) +t⁻ [[[2]]] ⧗ Trit + +# positive trit indicating coeffecient of (+1) +t⁺ [[[1]]] ⧗ Trit + +# zero trit indicating coeffecient of 0 +t⁰ [[[0]]] ⧗ Trit + +# returns true if a trit is negative +t⁻? [0 true false false] ⧗ Trit → Boolean + +:test (t⁻? t⁻) (true) +:test (t⁻? t⁺) (false) +:test (t⁻? t⁰) (false) + +# returns true if a trit is positive +t⁺? [0 false true false] ⧗ Trit → Boolean + +:test (t⁺? t⁻) (false) +:test (t⁺? t⁺) (true) +:test (t⁺? t⁰) (false) + +# returns true if a trit is zero +t⁰? [0 false false true] ⧗ Trit → Boolean + +:test (t⁰? t⁻) (false) +:test (t⁰? t⁺) (false) +:test (t⁰? t⁰) (true) + +# shifts a negative trit into a balanced ternary number +↑⁻‣ [[[[[2 (4 3 2 1 0)]]]]] ⧗ Number → Number + +:test (↑⁻(+0)) ((-1)) +:test (↑⁻(-1)) ((-4)) +:test (↑⁻(+42)) ((+125)) + +# shifts a positive trit into a balanced ternary number +↑⁺‣ [[[[[1 (4 3 2 1 0)]]]]] ⧗ Number → Number + +:test (↑⁺(+0)) ((+1)) +:test (↑⁺(-1)) ((-2)) +:test (↑⁺(+42)) ((+127)) + +# shifts a zero trit into a balanced ternary number +↑⁰‣ [[[[[0 (4 3 2 1 0)]]]]] ⧗ Number → Number + +:test (↑⁰(+0)) ([[[[0 3]]]]) +:test (↑⁰(+1)) ((+3)) +:test (↑⁰(+42)) ((+126)) + +# shifts a specified trit into a balanced ternary number +up [[[[[[5 2 1 0 (4 3 2 1 0)]]]]]] ⧗ Trit → Number → Number + +:test (up t⁻ (+42)) (↑⁻(+42)) +:test (up t⁺ (+42)) (↑⁺(+42)) +:test (up t⁰ (+42)) (↑⁰(+42)) + +# infinity +# WARNING: using this mostly results in undefined behavior! (TODO?) +infty z [[[[[1 (4 1)]]]]] ⧗ Number + +# negates a balanced ternary number +negate [[[[[4 3 1 2 0]]]]] ⧗ Number → Number + +-‣ negate + +:test (-(+0)) ((+0)) +:test (-(-1)) ((+1)) +:test (-(+42)) ((-42)) + +# converts a balanced ternary number to a list of trits +list! [0 z a⁻ a⁺ a⁰] ⧗ Number → List + z [[0]] + a⁻ [t⁻ : 0] + a⁺ [t⁺ : 0] + a⁰ [t⁰ : 0] + +# TODO: Tests! + +# strips leading 0s from a balanced ternary number +strip [^(0 z a⁻ a⁺ a⁰)] ⧗ Number → Number + z (+0) : true + a⁻ [0 [[↑⁻1 : false]]] + a⁺ [0 [[↑⁺1 : false]]] + a⁰ [0 [[(0 (+0) ↑⁰1) : 0]]] + +%‣ strip + +:test (%[[[[0 3]]]]) ((+0)) +:test (%[[[[2 (0 (0 (0 (0 3))))]]]]) ((-1)) +:test (%(+42)) ((+42)) + +# returns true if balanced ternary number is zero +zero? [0 true [false] [false] i] ⧗ Number → Boolean + +=?‣ zero? + +:test (=?(+0)) (true) +:test (=?(-1)) (false) +:test (=?(+1)) (false) +:test (=?(+42)) (false) + +# returns true if balanced ternary number is not +not-zero? [0 false [true] [true] i] ⧗ Number → Boolean + +≠?‣ not-zero? + +:test (≠?(+0)) (false) +:test (≠?(-1)) (true) +:test (≠?(+1)) (true) +:test (≠?(+42)) (true) + +# extracts least significant trit from a balanced ternary number +lst [0 t⁰ [t⁻] [t⁺] [t⁰]] ⧗ Number → Trit + +:test (lst (-1)) (t⁻) +:test (lst (+0)) (t⁰) +:test (lst (+1)) (t⁺) +:test (lst (+42)) (t⁰) + +# extracts most significant trit from a balanced ternary number +# <~>/<>? are hardcoded because list import would be recursive (TODO?) +# while this looks incredibly inefficient it's actually fairly fast because laziness +# TODO: find way of removing requirement of stripping first +# (or better solution in general) +mst [=?0 t⁰ ^(<~>(list! %0))] ⧗ Number → Trit + <~>‣ z [[[[<>?0 1 (3 2 (2 1 ^0) ~0)]]]] f false + <>?‣ [0 [[[false]]] true] + +:test (mst (-1)) (t⁻) +:test (mst (+0)) (t⁰) +:test (mst (+1)) (t⁺) +:test (mst (+42)) (t⁺) + +# returns true if balanced ternary number is negative +negative? [t⁻? (mst 0)] ⧗ Number → Boolean + +<?‣ negative? + +:test (<?(+0)) (false) +:test (<?(-1)) (true) +:test (<?(+1)) (false) +:test (<?(+42)) (false) + +# returns true if balanced ternary number is positive +positive? [t⁺? (mst 0)] ⧗ Number → Boolean + +>?‣ positive? + +:test (>?(+0)) (false) +:test (>?(-1)) (false) +:test (>?(+1)) (true) +:test (>?(+42)) (true) + +# converts the normal balanced ternary representation into abstract +# infinity can't be abstracted in finite time +# → the abstract representation is used in eq?/add/sub/mul +abstract! [0 z a⁻ a⁺ a⁰] ⧗ Number → AbstractNumber + z (+0) + a⁻ [[[[[2 4]]]]] + a⁺ [[[[[1 4]]]]] + a⁰ [[[[[0 4]]]]] + +→^‣ abstract! + +:test (→^(-3)) ([[[[0 [[[[2 [[[[3]]]]]]]]]]]]) +:test (→^(+0)) ([[[[3]]]]) +:test (→^(+3)) ([[[[0 [[[[1 [[[[3]]]]]]]]]]]]) + +# converts the abstracted balanced ternary representation back to normal +normal! ω [[0 z a⁻ a⁺ a⁰]] ⧗ AbstractNumber → Number + z (+0) + a⁻ [↑⁻([3 3 0] 0)] + a⁺ [↑⁺([3 3 0] 0)] + a⁰ [↑⁰([3 3 0] 0)] + +→_‣ normal! + +:test (→_[[[[3]]]]) ((+0)) +:test (→_(→^(+42))) ((+42)) +:test (→_(→^(-42))) ((-42)) + +# returns true if two balanced ternary numbers are equal +# → ignores leading 0s! +eq? [[abs 1 →^0]] ⧗ Number → Number → Boolean + abs [0 z a⁻ a⁺ a⁰] + z [=?(→_0)] + a⁻ [[0 false [2 0] [false] [false]]] + a⁺ [[0 false [false] [2 0] [false]]] + a⁰ [[0 (1 0) [false] [false] [2 0]]] + +…=?… eq? + +# returns true if two balanced ternary numbers are not equal +not-eq? not! ∘∘ eq? ⧗ Number → Number → Boolean + +…≠?… not-eq? + +:test ((-42) =? (-42)) (true) +:test ((-1) =? (-1)) (true) +:test ((-1) =? (+0)) (false) +:test ((+0) =? (+0)) (true) +:test ((+1) =? (+0)) (false) +:test ((+1) =? (+1)) (true) +:test ((+42) =? (+42)) (true) +:test ([[[[(1 (0 (0 (0 (0 3)))))]]]] =? (+1)) (true) +:test ((+1) ≠? (+0)) (true) +:test ((-42) ≠? (+42)) (true) + +# I believe Mogensen's Paper has an error in its inc/dec/add/mul/eq definitions. +# They use 3 instead of 2 abstractions in the functions, also we use switched +# +/0 in comparison to their implementation, yet the order of neg/pos/zero is +# the same. Something's weird. + +# adds (+1) to a balanced ternary number (can introduce leading 0s) +inc [~(0 z a⁻ a⁺ a⁰)] ⧗ Number → Number + z (+0) : (+1) + a⁻ [0 [[↑⁻1 : ↑⁰1]]] + a⁺ [0 [[↑⁺1 : ↑⁻0]]] + a⁰ [0 [[↑⁰1 : ↑⁺1]]] + +++‣ inc + +:test ((++(-42)) =? (-41)) (true) +:test ((++(-1)) =? (+0)) (true) +:test ((++(+0)) =? (+1)) (true) +:test ((++(++(++(++(++(+0)))))) =? (+5)) (true) +:test ((++(+42)) =? (+43)) (true) + +# subs (+1) from a balanced ternary number (can introduce leading 0s) +dec [~(0 z a⁻ a⁺ a⁰)] ⧗ Number → Number + z (+0) : (-1) + a⁻ [0 [[↑⁻1 : ↑⁺0]]] + a⁺ [0 [[↑⁺1 : ↑⁰1]]] + a⁰ [0 [[↑⁰1 : ↑⁻1]]] + +--‣ dec + +:test ((--(-42)) =? (-43)) (true) +:test ((--(+0)) =? (-1)) (true) +:test ((--(--(--(--(--(+5)))))) =? (+0)) (true) +:test ((--(+1)) =? (+0)) (true) +:test ((--(+42)) =? (+41)) (true) + +# adds two balanced ternary numbers (can introduce leading 0s) +# second argument gets abstracted (performance) +add [[abs 1 →^0]] ⧗ Number → Number → Number + abs [c (0 z a⁻ a⁺ a⁰)] + b⁻ [1 ↑⁺(3 0 t⁻) ↑⁰(3 0 t⁰) ↑⁻(3 0 t⁰)] + b⁰ [up 1 (3 0 t⁰)] + b⁺ [1 ↑⁰(3 0 t⁰) ↑⁻(3 0 t⁺) ↑⁺(3 0 t⁰)] + a⁻ [[[1 (b⁻ 1) b⁻' b⁰ b⁻]]] + b⁻' [1 ↑⁰(3 0 t⁻) ↑⁻(3 0 t⁰) ↑⁺(3 0 t⁻)] + a⁺ [[[1 (b⁺ 1) b⁰ b⁺' b⁺]]] + b⁺' [1 ↑⁺(3 0 t⁰) ↑⁰(3 0 t⁺) ↑⁻(3 0 t⁺)] + a⁰ [[[1 (b⁰ 1) b⁻ b⁺ b⁰]]] + z [[0 --(→_1) ++(→_1) →_1]] + c [[1 0 t⁰]] + +…+… add + +:test ((-42) + (-1) =? (-43)) (true) +:test ((-5) + (+6) =? (+1)) (true) +:test ((-1) + (+0) =? (-1)) (true) +:test ((+0) + (+0) =? (+0)) (true) +:test ((+1) + (+2) =? (+3)) (true) +:test ((+42) + (+1) =? (+43)) (true) + +# subs two balanced ternary numbers (can introduce leading 0s) +# second argument gets abstracted (performance) +sub [[1 + -0]] ⧗ Number → Number → Number + +…-… sub + +:test ((-42) - (-1) =? (-41)) (true) +:test ((-5) - (+6) =? (-11)) (true) +:test ((-1) - (+0) =? (-1)) (true) +:test ((+0) - (+0) =? (+0)) (true) +:test ((+1) - (+2) =? (-1)) (true) +:test ((+42) - (+1) =? (+41)) (true) + +# returns true if number is greater than other number +# larger numbers should be second argument (performance) +gre? [[>?(1 - 0)]] ⧗ Number → Number → Boolean + +…>?… gre? + +:test ((+1) >? (+2)) (false) +:test ((+2) >? (+2)) (false) +:test ((+3) >? (+2)) (true) + +# returns true if number is less than other number +# smaller numbers should be second argument (performance) +les? \gre? ⧗ Number → Number → Boolean + +…<?… les? + +:test ((+1) <? (+2)) (true) +:test ((+2) <? (+2)) (false) +:test ((+3) <? (+2)) (false) + +# returns true if number is less than or equal to other number +# smaller numbers should be second argument (performance) +leq? [[¬(1 >? 0)]] ⧗ Number → Number → Boolean + +…≤?… leq? + +:test ((+1) ≤? (+2)) (true) +:test ((+2) ≤? (+2)) (true) +:test ((+3) ≤? (+2)) (false) + +# returns true if number is greater than or equal to other number +# smaller numbers should be second argument (performance) +geq? \leq? ⧗ Number → Number → Boolean + +…≥?… geq? + +:test ((+1) ≥? (+2)) (false) +:test ((+2) ≥? (+2)) (true) +:test ((+3) ≥? (+2)) (true) + +# negates a balanced ternary number if <0 +abs [<?0 -0 0] ⧗ Number → Number + +|‣ abs + +:test (|(+0)) ((+0)) +:test (|(-1)) ((+1)) +:test (|(+42)) ((+42)) + +# apply a function n times to a value +# ~> substitute church numbers +apply z [[[rec]]] ⧗ Number → (a → a) → a → a + rec =?1 case-end case-apply + case-apply 0 ∘ (2 --1 0) + case-end i + +:test (apply (+5) ++‣ (+3)) ((+8)) + +# muls two balanced ternary numbers (can introduce leading 0s) +mul [[1 z a⁻ a⁺ a⁰]] ⧗ Number → Number → Number + z (+0) + a⁻ [↑⁰0 - 1] + a⁺ [↑⁰0 + 1] + a⁰ [↑⁰0] + +…⋅… mul + +:test ((+42) ⋅ (+0) =? (+0)) (true) +:test ((-1) ⋅ (+42) =? (-42)) (true) +:test ((+3) ⋅ (+11) =? (+33)) (true) +:test ((+42) ⋅ (-4) =? (-168)) (true) + +# divs a balanced ternary number by three (rshifts least significant trit) +div³ [~(0 z a⁻ a⁺ a⁰)] ⧗ Number → Number + z (+0) : (+0) + a⁻ [0 [[↑⁻1 : 1]]] + a⁺ [0 [[↑⁺1 : 1]]] + a⁰ [0 [[↑⁰1 : 1]]] + +/³‣ div³ + +:test (/³(+6)) ((+2)) +:test (/³(-6)) ((-2)) +:test (/³(+5)) ((+2)) + +# divs a balanced ternary number by two (essentially binary >>1) +div² [z [[[[rec]]]] (+0) 0 0] ⧗ Number → Number + rec =?1 case-end case-div + case-div 3 /³(2 + 0) /³1 0 + case-end 2 + +/²‣ div² + +:test (/²(+6)) ((+3)) +:test (/²(-6)) ((-3)) +:test (/²(+5)) ((+2)) + +# manually counts how many times a balanced ternary number fits into another one +# TODO: quadratic approximation? +# TODO: fix for negative numbers +brute-div \[z [[[[[rec]]]]] (+0) 0 0] ⧗ Number → Number → Number + rec (2 >? 0) case-end case-count + case-count 4 ++3 (2 + 1) 1 0 + case-end 3 + +…/!… brute-div + +:test ((+4) /! (+2)) ((+2)) +:test ((+4) /! (+4)) ((+1)) +:test ((+4) /! (+5)) ((+0)) + +# TODO: fix for negative numbers +brute-mod \[z [[[[[rec]]]]] (+0) 0 0] ⧗ Number → Number → Number + rec (2 >? 0) case-end case-count + case-count 4 ++3 (2 + 1) 1 0 + case-end 0 - (3 ⋅ 1) + +…%!… brute-mod + +# finds quotient and remainder using long division +# WARNING: don't use; incorrect and slow +# TODO: faster algorithm +# dividend -> divisor -> (quot, rem) +# 0 divisor, 1 dividend, 2 (quot, rem) +# align: (quot, divisor) +quot-rem [[z [[[[rec]]]] ((+1) : (+0)) 1 0]] ⧗ Number → Number → (Pair Number Number) + rec (1 =? 0) case-eq ((1 <? 0) case-les case-div) + case-div calc (z [[[align]]] ^2 0) + align (0 ≤? 4) (1 : 0) (2 ↑⁰1 ↑⁰0) + calc [final (4 (^0 : ~3) (2 - ~0) 1)] + final [(^4 + ^0) : (~4 + ~0)] + case-eq (+0) : (+1) + case-les (+1) : 1 + +# divs two balanced ternary numbers +# WARNING: don't use; incorrect and slow +div ^‣ ∘∘ quot-rem ⧗ Number → Number + +…/… div + +# returns remainder of integer division +# WARNING: don't use; incorrect and slow +mod ~‣ ∘∘ quot-rem ⧗ Number → Number + +…%… mod + +# returns max number of two +max [[(1 ≤? 0) 0 1]] ⧗ Number → Number → Number + +:test (max (+5) (+2)) ((+5)) + +# returns min number of two +min [[(1 ≤? 0) 1 0]] ⧗ Number → Number → Number + +:test (min (+5) (+2)) ((+2)) + +# clamps a number between two numbers +clamp [[[min 1 (max 0 2)]]] ⧗ Number → Number → Number + +:test (clamp (+0) (+5) (+3)) ((+3)) +:test (clamp (+0) (+5) (-2)) ((+0)) +:test (clamp (+0) (+5) (+7)) ((+5)) diff --git a/std/Number/Unary.bruijn b/std/Number/Unary.bruijn new file mode 100644 index 0000000..cf72e3b --- /dev/null +++ b/std/Number/Unary.bruijn @@ -0,0 +1,57 @@ +# MIT License, Copyright (c) 2022 Marvin Borner +# classic Church style numerals + +:import std/Logic . + +zero [[0]] + +# returns true if a unary number is zero +zero? [0 [[[0]]] [[1]]] ⧗ Unary → Boolean + +=?‣ zero? + +:test (=?(+0u)) (true) +:test (=?(+42u)) (false) + +# adds 1 to a unary number +inc [[[1 (2 1 0)]]] ⧗ Unary → Unary + +++‣ inc + +:test (++(+0u)) ((+1u)) +:test (++(+1u)) ((+2u)) +:test (++(+42u)) ((+43u)) + +# subs 1 from a unary number +dec [[[2 [[0 (1 3)]] [1] [0]]]] ⧗ Unary → Unary + +--‣ dec + +:test (--(+0u)) ((+0u)) +:test (--(+1u)) ((+0u)) +:test (--(+42u)) ((+41u)) + +# adds two unary numbers +add [[[[3 1 (2 1 0)]]]] ⧗ Unary → Unary → Unary + +…+… add + +:test ((+0u) + (+2u)) ((+2u)) +:test ((+5u) + (+3u)) ((+8u)) + +# muls two unary numbers +mul [[[2 (1 0)]]] ⧗ Unary → Unary → Unary + +…⋅… mul + +:test ((+0u) ⋅ (+2u)) ((+0u)) +:test ((+2u) ⋅ (+3u)) ((+6u)) + +# exponentiates two unary numbers +# gives 1 if exponent is 0 +exp [[0 1]] ⧗ Unary → Unary → Unary + +…^… exp + +:test ((+1u) ^ (+0u)) ((+1u)) +:test ((+2u) ^ (+3u)) ((+8u)) |