aboutsummaryrefslogtreecommitdiffhomepage
path: root/std/Number.bruijn
diff options
context:
space:
mode:
Diffstat (limited to 'std/Number.bruijn')
-rw-r--r--std/Number.bruijn456
1 files changed, 4 insertions, 452 deletions
diff --git a/std/Number.bruijn b/std/Number.bruijn
index dfed84c..e17d7d6 100644
--- a/std/Number.bruijn
+++ b/std/Number.bruijn
@@ -1,453 +1,5 @@
-# MIT License, Copyright (c) 2022 Marvin Borner
-# This file defines the most basic mathematical operations
-# → refer to std/Math for more advanced functions
-# Heavily inspired by the works of T.Æ. Mogensen and Douglas W. Jones (see refs in README)
+# MIT License, Copyright (c) 2023 Marvin Borner
+# this is just a reference to the ternary implementation
+# read the readme for the reasoning of using balanced ternary by default
-:import std/Combinator .
-:import std/Logic .
-:import std/Pair .
-
-# negative trit indicating coeffecient of (-1)
-t⁻ [[[2]]] ⧗ Trit
-
-# positive trit indicating coeffecient of (+1)
-t⁺ [[[1]]] ⧗ Trit
-
-# zero trit indicating coeffecient of 0
-t⁰ [[[0]]] ⧗ Trit
-
-# returns true if a trit is negative
-t⁻? [0 true false false] ⧗ Trit → Boolean
-
-:test (t⁻? t⁻) (true)
-:test (t⁻? t⁺) (false)
-:test (t⁻? t⁰) (false)
-
-# returns true if a trit is positive
-t⁺? [0 false true false] ⧗ Trit → Boolean
-
-:test (t⁺? t⁻) (false)
-:test (t⁺? t⁺) (true)
-:test (t⁺? t⁰) (false)
-
-# returns true if a trit is zero
-t⁰? [0 false false true] ⧗ Trit → Boolean
-
-:test (t⁰? t⁻) (false)
-:test (t⁰? t⁺) (false)
-:test (t⁰? t⁰) (true)
-
-# shifts a negative trit into a balanced ternary number
-↑⁻‣ [[[[[2 (4 3 2 1 0)]]]]] ⧗ Number → Number
-
-:test (↑⁻(+0)) ((-1))
-:test (↑⁻(-1)) ((-4))
-:test (↑⁻(+42)) ((+125))
-
-# shifts a positive trit into a balanced ternary number
-↑⁺‣ [[[[[1 (4 3 2 1 0)]]]]] ⧗ Number → Number
-
-:test (↑⁺(+0)) ((+1))
-:test (↑⁺(-1)) ((-2))
-:test (↑⁺(+42)) ((+127))
-
-# shifts a zero trit into a balanced ternary number
-↑⁰‣ [[[[[0 (4 3 2 1 0)]]]]] ⧗ Number → Number
-
-:test (↑⁰(+0)) ([[[[0 3]]]])
-:test (↑⁰(+1)) ((+3))
-:test (↑⁰(+42)) ((+126))
-
-# shifts a specified trit into a balanced ternary number
-up [[[[[[5 2 1 0 (4 3 2 1 0)]]]]]] ⧗ Trit → Number → Number
-
-:test (up t⁻ (+42)) (↑⁻(+42))
-:test (up t⁺ (+42)) (↑⁺(+42))
-:test (up t⁰ (+42)) (↑⁰(+42))
-
-# infinity
-# WARNING: using this mostly results in undefined behavior! (TODO?)
-infty z [[[[[1 (4 1)]]]]] ⧗ Number
-
-# negates a balanced ternary number
-negate [[[[[4 3 1 2 0]]]]] ⧗ Number → Number
-
--‣ negate
-
-:test (-(+0)) ((+0))
-:test (-(-1)) ((+1))
-:test (-(+42)) ((-42))
-
-# converts a balanced ternary number to a list of trits
-list! [0 z a⁻ a⁺ a⁰] ⧗ Number → List
- z [[0]]
- a⁻ [t⁻ : 0]
- a⁺ [t⁺ : 0]
- a⁰ [t⁰ : 0]
-
-# TODO: Tests!
-
-# strips leading 0s from a balanced ternary number
-strip [^(0 z a⁻ a⁺ a⁰)] ⧗ Number → Number
- z (+0) : true
- a⁻ [0 [[↑⁻1 : false]]]
- a⁺ [0 [[↑⁺1 : false]]]
- a⁰ [0 [[(0 (+0) ↑⁰1) : 0]]]
-
-%‣ strip
-
-:test (%[[[[0 3]]]]) ((+0))
-:test (%[[[[2 (0 (0 (0 (0 3))))]]]]) ((-1))
-:test (%(+42)) ((+42))
-
-# returns true if balanced ternary number is zero
-zero? [0 true [false] [false] i] ⧗ Number → Boolean
-
-=?‣ zero?
-
-:test (=?(+0)) (true)
-:test (=?(-1)) (false)
-:test (=?(+1)) (false)
-:test (=?(+42)) (false)
-
-# returns true if balanced ternary number is not
-not-zero? [0 false [true] [true] i] ⧗ Number → Boolean
-
-≠?‣ not-zero?
-
-:test (≠?(+0)) (false)
-:test (≠?(-1)) (true)
-:test (≠?(+1)) (true)
-:test (≠?(+42)) (true)
-
-# extracts least significant trit from a balanced ternary number
-lst [0 t⁰ [t⁻] [t⁺] [t⁰]] ⧗ Number → Trit
-
-:test (lst (-1)) (t⁻)
-:test (lst (+0)) (t⁰)
-:test (lst (+1)) (t⁺)
-:test (lst (+42)) (t⁰)
-
-# extracts most significant trit from a balanced ternary number
-# <~>/<>? are hardcoded because list import would be recursive (TODO?)
-# while this looks incredibly inefficient it's actually fairly fast because laziness
-# TODO: find way of removing requirement of stripping first
-# (or better solution in general)
-mst [=?0 t⁰ ^(<~>(list! %0))] ⧗ Number → Trit
- <~>‣ z [[[[<>?0 1 (3 2 (2 1 ^0) ~0)]]]] f false
- <>?‣ [0 [[[false]]] true]
-
-:test (mst (-1)) (t⁻)
-:test (mst (+0)) (t⁰)
-:test (mst (+1)) (t⁺)
-:test (mst (+42)) (t⁺)
-
-# returns true if balanced ternary number is negative
-negative? [t⁻? (mst 0)] ⧗ Number → Boolean
-
-<?‣ negative?
-
-:test (<?(+0)) (false)
-:test (<?(-1)) (true)
-:test (<?(+1)) (false)
-:test (<?(+42)) (false)
-
-# returns true if balanced ternary number is positive
-positive? [t⁺? (mst 0)] ⧗ Number → Boolean
-
->?‣ positive?
-
-:test (>?(+0)) (false)
-:test (>?(-1)) (false)
-:test (>?(+1)) (true)
-:test (>?(+42)) (true)
-
-# converts the normal balanced ternary representation into abstract
-# infinity can't be abstracted in finite time
-# → the abstract representation is used in eq?/add/sub/mul
-abstract! [0 z a⁻ a⁺ a⁰] ⧗ Number → AbstractNumber
- z (+0)
- a⁻ [[[[[2 4]]]]]
- a⁺ [[[[[1 4]]]]]
- a⁰ [[[[[0 4]]]]]
-
-→^‣ abstract!
-
-:test (→^(-3)) ([[[[0 [[[[2 [[[[3]]]]]]]]]]]])
-:test (→^(+0)) ([[[[3]]]])
-:test (→^(+3)) ([[[[0 [[[[1 [[[[3]]]]]]]]]]]])
-
-# converts the abstracted balanced ternary representation back to normal
-normal! ω [[0 z a⁻ a⁺ a⁰]] ⧗ AbstractNumber → Number
- z (+0)
- a⁻ [↑⁻([3 3 0] 0)]
- a⁺ [↑⁺([3 3 0] 0)]
- a⁰ [↑⁰([3 3 0] 0)]
-
-→_‣ normal!
-
-:test (→_[[[[3]]]]) ((+0))
-:test (→_(→^(+42))) ((+42))
-:test (→_(→^(-42))) ((-42))
-
-# returns true if two balanced ternary numbers are equal
-# → ignores leading 0s!
-eq? [[abs 1 →^0]] ⧗ Number → Number → Boolean
- abs [0 z a⁻ a⁺ a⁰]
- z [=?(→_0)]
- a⁻ [[0 false [2 0] [false] [false]]]
- a⁺ [[0 false [false] [2 0] [false]]]
- a⁰ [[0 (1 0) [false] [false] [2 0]]]
-
-…=?… eq?
-
-# returns true if two balanced ternary numbers are not equal
-not-eq? not! ∘∘ eq? ⧗ Number → Number → Boolean
-
-…≠?… not-eq?
-
-:test ((-42) =? (-42)) (true)
-:test ((-1) =? (-1)) (true)
-:test ((-1) =? (+0)) (false)
-:test ((+0) =? (+0)) (true)
-:test ((+1) =? (+0)) (false)
-:test ((+1) =? (+1)) (true)
-:test ((+42) =? (+42)) (true)
-:test ([[[[(1 (0 (0 (0 (0 3)))))]]]] =? (+1)) (true)
-:test ((+1) ≠? (+0)) (true)
-:test ((-42) ≠? (+42)) (true)
-
-# I believe Mogensen's Paper has an error in its inc/dec/add/mul/eq definitions.
-# They use 3 instead of 2 abstractions in the functions, also we use switched
-# +/0 in comparison to their implementation, yet the order of neg/pos/zero is
-# the same. Something's weird.
-
-# adds (+1) to a balanced ternary number (can introduce leading 0s)
-inc [~(0 z a⁻ a⁺ a⁰)] ⧗ Number → Number
- z (+0) : (+1)
- a⁻ [0 [[↑⁻1 : ↑⁰1]]]
- a⁺ [0 [[↑⁺1 : ↑⁻0]]]
- a⁰ [0 [[↑⁰1 : ↑⁺1]]]
-
-++‣ inc
-
-:test ((++(-42)) =? (-41)) (true)
-:test ((++(-1)) =? (+0)) (true)
-:test ((++(+0)) =? (+1)) (true)
-:test ((++(++(++(++(++(+0)))))) =? (+5)) (true)
-:test ((++(+42)) =? (+43)) (true)
-
-# subs (+1) from a balanced ternary number (can introduce leading 0s)
-dec [~(0 z a⁻ a⁺ a⁰)] ⧗ Number → Number
- z (+0) : (-1)
- a⁻ [0 [[↑⁻1 : ↑⁺0]]]
- a⁺ [0 [[↑⁺1 : ↑⁰1]]]
- a⁰ [0 [[↑⁰1 : ↑⁻1]]]
-
---‣ dec
-
-:test ((--(-42)) =? (-43)) (true)
-:test ((--(+0)) =? (-1)) (true)
-:test ((--(--(--(--(--(+5)))))) =? (+0)) (true)
-:test ((--(+1)) =? (+0)) (true)
-:test ((--(+42)) =? (+41)) (true)
-
-# adds two balanced ternary numbers (can introduce leading 0s)
-# second argument gets abstracted (performance)
-add [[abs 1 →^0]] ⧗ Number → Number → Number
- abs [c (0 z a⁻ a⁺ a⁰)]
- b⁻ [1 ↑⁺(3 0 t⁻) ↑⁰(3 0 t⁰) ↑⁻(3 0 t⁰)]
- b⁰ [up 1 (3 0 t⁰)]
- b⁺ [1 ↑⁰(3 0 t⁰) ↑⁻(3 0 t⁺) ↑⁺(3 0 t⁰)]
- a⁻ [[[1 (b⁻ 1) b⁻' b⁰ b⁻]]]
- b⁻' [1 ↑⁰(3 0 t⁻) ↑⁻(3 0 t⁰) ↑⁺(3 0 t⁻)]
- a⁺ [[[1 (b⁺ 1) b⁰ b⁺' b⁺]]]
- b⁺' [1 ↑⁺(3 0 t⁰) ↑⁰(3 0 t⁺) ↑⁻(3 0 t⁺)]
- a⁰ [[[1 (b⁰ 1) b⁻ b⁺ b⁰]]]
- z [[0 --(→_1) ++(→_1) →_1]]
- c [[1 0 t⁰]]
-
-…+… add
-
-:test ((-42) + (-1) =? (-43)) (true)
-:test ((-5) + (+6) =? (+1)) (true)
-:test ((-1) + (+0) =? (-1)) (true)
-:test ((+0) + (+0) =? (+0)) (true)
-:test ((+1) + (+2) =? (+3)) (true)
-:test ((+42) + (+1) =? (+43)) (true)
-
-# subs two balanced ternary numbers (can introduce leading 0s)
-# second argument gets abstracted (performance)
-sub [[1 + -0]] ⧗ Number → Number → Number
-
-…-… sub
-
-:test ((-42) - (-1) =? (-41)) (true)
-:test ((-5) - (+6) =? (-11)) (true)
-:test ((-1) - (+0) =? (-1)) (true)
-:test ((+0) - (+0) =? (+0)) (true)
-:test ((+1) - (+2) =? (-1)) (true)
-:test ((+42) - (+1) =? (+41)) (true)
-
-# returns true if number is greater than other number
-# larger numbers should be second argument (performance)
-gre? [[>?(1 - 0)]] ⧗ Number → Number → Boolean
-
-…>?… gre?
-
-:test ((+1) >? (+2)) (false)
-:test ((+2) >? (+2)) (false)
-:test ((+3) >? (+2)) (true)
-
-# returns true if number is less than other number
-# smaller numbers should be second argument (performance)
-les? \gre? ⧗ Number → Number → Boolean
-
-…<?… les?
-
-:test ((+1) <? (+2)) (true)
-:test ((+2) <? (+2)) (false)
-:test ((+3) <? (+2)) (false)
-
-# returns true if number is less than or equal to other number
-# smaller numbers should be second argument (performance)
-leq? [[¬(1 >? 0)]] ⧗ Number → Number → Boolean
-
-…≤?… leq?
-
-:test ((+1) ≤? (+2)) (true)
-:test ((+2) ≤? (+2)) (true)
-:test ((+3) ≤? (+2)) (false)
-
-# returns true if number is greater than or equal to other number
-# smaller numbers should be second argument (performance)
-geq? \leq? ⧗ Number → Number → Boolean
-
-…≥?… geq?
-
-:test ((+1) ≥? (+2)) (false)
-:test ((+2) ≥? (+2)) (true)
-:test ((+3) ≥? (+2)) (true)
-
-# negates a balanced ternary number if <0
-abs [<?0 -0 0] ⧗ Number → Number
-
-|‣ abs
-
-:test (|(+0)) ((+0))
-:test (|(-1)) ((+1))
-:test (|(+42)) ((+42))
-
-# apply a function n times to a value
-# ~> substitute church numbers
-apply z [[[rec]]] ⧗ Number → (a → a) → a → a
- rec =?1 case-end case-apply
- case-apply 0 ∘ (2 --1 0)
- case-end i
-
-:test (apply (+5) ++‣ (+3)) ((+8))
-
-# muls two balanced ternary numbers (can introduce leading 0s)
-mul [[1 z a⁻ a⁺ a⁰]] ⧗ Number → Number → Number
- z (+0)
- a⁻ [↑⁰0 - 1]
- a⁺ [↑⁰0 + 1]
- a⁰ [↑⁰0]
-
-…⋅… mul
-
-:test ((+42) ⋅ (+0) =? (+0)) (true)
-:test ((-1) ⋅ (+42) =? (-42)) (true)
-:test ((+3) ⋅ (+11) =? (+33)) (true)
-:test ((+42) ⋅ (-4) =? (-168)) (true)
-
-# divs a balanced ternary number by three (rshifts least significant trit)
-div³ [~(0 z a⁻ a⁺ a⁰)] ⧗ Number → Number
- z (+0) : (+0)
- a⁻ [0 [[↑⁻1 : 1]]]
- a⁺ [0 [[↑⁺1 : 1]]]
- a⁰ [0 [[↑⁰1 : 1]]]
-
-/³‣ div³
-
-:test (/³(+6)) ((+2))
-:test (/³(-6)) ((-2))
-:test (/³(+5)) ((+2))
-
-# divs a balanced ternary number by two (essentially binary >>1)
-div² [z [[[[rec]]]] (+0) 0 0] ⧗ Number → Number
- rec =?1 case-end case-div
- case-div 3 /³(2 + 0) /³1 0
- case-end 2
-
-/²‣ div²
-
-:test (/²(+6)) ((+3))
-:test (/²(-6)) ((-3))
-:test (/²(+5)) ((+2))
-
-# manually counts how many times a balanced ternary number fits into another one
-# TODO: quadratic approximation?
-# TODO: fix for negative numbers
-brute-div \[z [[[[[rec]]]]] (+0) 0 0] ⧗ Number → Number → Number
- rec (2 >? 0) case-end case-count
- case-count 4 ++3 (2 + 1) 1 0
- case-end 3
-
-…/!… brute-div
-
-:test ((+4) /! (+2)) ((+2))
-:test ((+4) /! (+4)) ((+1))
-:test ((+4) /! (+5)) ((+0))
-
-# TODO: fix for negative numbers
-brute-mod \[z [[[[[rec]]]]] (+0) 0 0] ⧗ Number → Number → Number
- rec (2 >? 0) case-end case-count
- case-count 4 ++3 (2 + 1) 1 0
- case-end 0 - (3 ⋅ 1)
-
-…%!… brute-mod
-
-# finds quotient and remainder using long division
-# WARNING: don't use; incorrect and slow
-# TODO: faster algorithm
-# dividend -> divisor -> (quot, rem)
-# 0 divisor, 1 dividend, 2 (quot, rem)
-# align: (quot, divisor)
-quot-rem [[z [[[[rec]]]] ((+1) : (+0)) 1 0]] ⧗ Number → Number → (Pair Number Number)
- rec (1 =? 0) case-eq ((1 <? 0) case-les case-div)
- case-div calc (z [[[align]]] ^2 0)
- align (0 ≤? 4) (1 : 0) (2 ↑⁰1 ↑⁰0)
- calc [final (4 (^0 : ~3) (2 - ~0) 1)]
- final [(^4 + ^0) : (~4 + ~0)]
- case-eq (+0) : (+1)
- case-les (+1) : 1
-
-# divs two balanced ternary numbers
-# WARNING: don't use; incorrect and slow
-div ^‣ ∘∘ quot-rem ⧗ Number → Number
-
-…/… div
-
-# returns remainder of integer division
-# WARNING: don't use; incorrect and slow
-mod ~‣ ∘∘ quot-rem ⧗ Number → Number
-
-…%… mod
-
-# returns max number of two
-max [[(1 ≤? 0) 0 1]] ⧗ Number → Number → Number
-
-:test (max (+5) (+2)) ((+5))
-
-# returns min number of two
-min [[(1 ≤? 0) 1 0]] ⧗ Number → Number → Number
-
-:test (min (+5) (+2)) ((+2))
-
-# clamps a number between two numbers
-clamp [[[min 1 (max 0 2)]]] ⧗ Number → Number → Number
-
-:test (clamp (+0) (+5) (+3)) ((+3))
-:test (clamp (+0) (+5) (-2)) ((+0))
-:test (clamp (+0) (+5) (+7)) ((+5))
+:input std/Number/Ternary .