# ================== # Lennart # From Lambda-n-ways # ================== true [[0]] false [[1]] if [[[2 0 1]]] zero [[1]] succ [[[0 2]]] one succ zero two succ one three succ two const [[1]] pair [[[0 2 1]]] fst [[1 0 [[1]]]] snd [[1 0 [[0]]]] fix [[1 (0 0)] [1 (0 0)]] add fix [[[1 0 [succ (3 0 1)]]]] mul fix [[[1 zero [add 1 (3 0 1)]]]] fac fix [[0 one [mul 1 (2 0)]]] eqnat fix [[[1 (0 true (const false)) [1 false [4 1 0]]]]] sumto fix [[0 zero [add 1 (2 0)]]] n5 add two three n6 add three three n17 add n6 (add n6 n5) n37 succ (mul n6 n6) n703 sumto n37 n720 fac n6 # this can take some time.. # - should return true :print eqnat n720 (add n703 n17) # ========= # Ackermann # From AIT # ========= two [[1 (1 0)]] omega [0 0] ackify [[0 1 0]] ackerlike [0 ackify omega 0] # this can take a VERY long while # maybe even too long for benchmarking # - should return exponential tower with 256 levels # :print ackerlike two main [0]