# Metaprogramming Bruijn has a homoiconic meta encoding inspired by Lisp's quoting feature. Blog post with more details: [Metaprogramming and self-interpretation](https://text.marvinborner.de/2023-09-03-21.html). ## Encoding `X ⤳ [[[2 (+Xu)]]] `(M N) ⤳ [[[1 `M `N]]] `[M] ⤳ [[[0 `M]]] Any quoted term gets converted to this encoding: ``` bruijn # example quotations :test (`0) ([[[2 (+0u)]]]) :test (`[0]) ([[[0 [[[2 (+0u)]]]]]]) :test (`'0') ([[[0 [[[0 [[[0 [[[1 [[[2 (+0u)]]] [[[1 [[[2 (+0u)]]] [[[1 [[[2 (+0u)]]] [[[1 [[[2 (+0u)]]] [[[1 [[[2 (+1u)]]] [[[1 [[[2 (+1u)]]] [[[1 [[[2 (+0u)]]] [[[1 [[[2 (+0u)]]] [[[2 (+2u)]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]) # quotes are nestable! :test (``0) ([[[0 [[[0 [[[0 [[[1 [[[2 (+2u)]]] [[[0 [[[0 [[[2 (+0u)]]]]]]]]]]]]]]]]]]]]]) :test (`[0 `0]) ([[[0 [[[1 [[[2 (+0u)]]] [[[0 [[[0 [[[0 [[[1 [[[2 (+2u)]]] [[[0 [[[0 [[[2 (+0u)]]]]]]]]]]]]]]]]]]]]]]]]]]]) ``` ## Quasiquotation Quoted terms can be escaped (*unquoted*) using the comma symbol. Unquoted terms will be fully evaluated first before getting quoted again. ``` bruijn :test (```,[0]) (``[0]) :test (`,`,[0]) ([0]) :test (`[0 `,[0]]) (`[0 [0]]) ``` Unquoted De Bruijn indices will get bound to the respective abstraction outside of its meta encoding. ``` bruijn # adds two using normal quotation add-two `[0 + (+2u)] :test (!add-two (+2u)) ((+4u)) # adds two using a reaching De Bruijn index add-two* [`(,0 + (+2u))] :test (!(add-two* `(+2u))) ((+4u)) ``` ## Meta library [`std/Meta`](/std/Meta.bruijn.html) The meta library enables simple interaction with the meta encoding. Examples: ``` bruijn # testing equivalence :test (α-eq? `[0 0] `[0 0]) (true) :test (α-eq? `α-eq? `α-eq?) (true) # BLC length of meta term :test (length `[0]) ((+4u)) :test (length `[[1 1]]) ((+12u)) # self-modification :test (lhs `(1 0) `0) (`(0 0)) :test (rhs `(0 1) `0) (`(0 0)) :test (swap `(1 0)) (`(0 1)) :test (map inc `0) (`1) :test (map (map inc) `[0]) (`[1]) :test (map swap `[0 1]) (`[1 0]) # encoding terms as numbers :test ((encode `(0 0)) =? (+3)) (true) :test ((encode `[0]) =? (+8)) (true) # decoding numbers to terms :test (decode (+3)) (`(0 0)) :test (decode (+8)) (`[0]) ```