:import std/Combinator . :import std/Number . :import std/List . # --------------- # explicit Church # --------------- # passes all functions explicitly explicit-y* [[[0 1] <$> 0] ([[1 0)]] <$> 0)] # even x = if x == 0 then true else odd? (x-1) g [[[=?0 [[1]] (1 --0)]]] # odd x = if x == 0 then false else even? (x-1) h [[[=?0 [[0]] (2 --0)]]] # merged even/odd rec explicit-y* (g : {}h) :test (^rec (+5)) ([[0]]) :test (_rec (+5)) ([[1]]) # n % 3 mod3 ^(explicit-y* (zero : (one : {}two))) zero [[[[=?0 (+0) (2 --0)]]]] one [[[[=?0 (+1) (1 --0)]]]] two [[[[=?0 (+2) (3 --0)]]]] :test ((mod3 (+5)) =? (+2)) ([[1]]) # ---------------- # explicit tupling # ---------------- # passes all functions explicitly # requires a tuple mapping function first # or, minified: [[0 0] [[2 (1 1 0) 0]]] (38 bit!) tupled-y* [y [[2 (1 0) 0]]] # merged even odd rec tupled-y* map [0 g h] map [&[[[0 (3 2) (3 1)]]]] # [[1]] / [[0]] are tuple selectors: :test (rec [[1]] (+5)) ([[0]]) :test (rec [[0]] (+5)) ([[1]]) # n % 3, [[[2]]] selects first tuple element mod3 tupled-y* map [0 zero one two] [[[2]]] map [&[[[[0 (4 3) (4 2) (4 1)]]]]] zero [[[[=?0 (+0) (2 --0)]]]] one [[[[=?0 (+1) (1 --0)]]]] two [[[[=?0 (+2) (3 --0)]]]] :test ((mod3 (+5)) =? (+2)) ([[1]]) # NOTE: You can merge the mapping argument directly into the list # like [[0 (1 A) (1 B) (1 C) ...]]. Then y*=y. # --------------- # implicit Church # --------------- # passes all functions in a single list implicit-y* y [[&(1 0) <$> 0]] # even x = if x == 0 then true else odd? (x-1) g [[=?0 [[1]] (_1 --0)]] # odd x = if x == 0 then false else even? (x-1) h [[=?0 [[0]] (^1 --0)]] # merged even/odd rec implicit-y* (g : {}h) :test (^rec (+5)) ([[0]]) :test (_rec (+5)) ([[1]]) # n % 3 mod3 ^(implicit-y* (zero : (one : {}two))) zero [[=?0 (+0) (_1 --0)]] one [[=?0 (+1) (^(~1) --0)]] two [[=?0 (+2) (^1 --0)]] :test ((mod3 (+5)) =? (+2)) ([[1]])