# MIT License, Copyright (c) 2023 Marvin Borner # TODO: Use abstract representation for logic instead of listifying :import std/Combinator . :import std/List . :import std/Logic . # bit indicating a one, compatible with std/Logic b¹ true ⧗ Bit # bit indicating a zero, compatible with std/Logic b⁰ false ⧗ Bit # returns true if a bit is set b¹? i ⧗ Bit → Boolean :test (b¹? b¹) (true) :test (b¹? b⁰) (false) # returns true if a bit is unset b⁰? not! ⧗ Bit → Boolean :test (b⁰? b⁰) (true) :test (b⁰? b¹) (false) # shifts a one into a binary number ↑¹‣ [[[[1 (3 2 1 0)]]]] ⧗ Binary → Binary :test (↑¹[[[0 2]]]) ([[[1 (0 2)]]]) # shifts a zero into a binary number ↑⁰‣ [[[[0 (3 2 1 0)]]]] ⧗ Binary → Binary :test (↑⁰(+1b)) ((+2b)) # shifts a specified bit into a binary number up [[[[[4 1 0 (3 2 1 0)]]]]] ⧗ Bit → Binary → Binary :test (up b¹ [[[0 2]]]) ([[[1 (0 2)]]]) :test (up b⁰ (+1b)) ((+2b)) # converts a binary number to a list of bits list! [0 z a¹ a⁰] ⧗ Binary → (List Bit) z empty a¹ [b¹ : 0] a⁰ [b⁰ : 0] :test (list! (+0b)) (empty) :test (list! (+6b)) (b⁰ : (b¹ : (b¹ : empty))) # converts a list of bits to a binary number binary! foldr up (+0b) ⧗ (List Bit) → Binary :test (binary! (list! (+0b))) ((+0b)) :test (binary! (list! (+42b))) ((+42b)) # strips leading 0s from a binary number strip [^(0 z a¹ a⁰)] ⧗ Binary → Binary z (+0b) : true a¹ [0 [[↑¹1 : false]]] a⁰ [0 [[(0 (+0b) ↑⁰1) : 0]]] %‣ strip :test (%[[[0 2]]]) ((+0b)) :test (%[[[1 (0 (0 (0 (0 2))))]]]) ((+1b)) :test (%(+2b)) ((+2b)) # returns true if a binary number is zero zero? [0 true [false] i] ⧗ Binary → Boolean =?‣ zero? :test (=?(+0b)) (true) :test (=?[[[0 (0 2)]]]) (true) :test (=?(+1b)) (false) # extracts least significant bit from a binary number lst [0 b⁰ [b¹] [b⁰]] ⧗ Binary → Bit :test (lst (+0b)) (b⁰) :test (lst (+1b)) (b¹) :test (lst (+42b)) (b⁰) # extracts most significant bit from a binary number # not really useful for binary numbers, but part of interface mst [=?0 b⁰ ^(<~>(list! %0))] ⧗ Binary → Bit :test (mst (+0b)) (b⁰) :test (mst (+1b)) (b¹) :test (mst (+42b)) (b¹) # extracts nth bit from a binary number nth …!!… ∘ list! ⧗ Binary → Number → Bit # logical and on two binary numbers and! binary! ∘∘ (ψ* zip-with …⋀?… list!) ⧗ Binary → Binary → Binary …⋀!… and! :test (and! (+1b) (+0b)) ((+0b)) :test (and! (+5b) (+4b)) ((+4b)) :test (and! (+10b) (+12b)) ((+8b)) # logical or on two binary numbers # TODO: Fix for numbers with different length (→ zero padding?) or! binary! ∘∘ (ψ* zip-with …⋁?… list!) ⧗ Binary → Binary → Binary …⋁!… or! :test (or! (+10b) (+12b)) ((+14b)) # :test (or! (+1b) (+0b)) ((+1b)) # :test (or! (+5b) (+3b)) ((+7b)) # converts the normal binary representation into abstract abstract! [0 z a¹ a⁰] ⧗ Binary → AbstractBinary z (+0b) a¹ [[[[1 3]]]] a⁰ [[[[0 3]]]] →^‣ abstract! # converts the abstracted binary representation back to normal normal! ω [[0 z a¹ a⁰]] ⧗ AbstractBinary → Binary z (+0b) a¹ [↑¹([3 3 0] 0)] a⁰ [↑⁰([3 3 0] 0)] →_‣ normal! # returns true if two binary numbers are equal # → ignores leading 0s! # also: ⋀?‣ ∘∘ (ψ* zip-with xnor? list!) eq? [[abs 1 →^0]] ⧗ Binary → Binary → Boolean abs [0 z a¹ a⁰] z [=?(→_0)] a¹ [[0 false [2 0] [false]]] a⁰ [[0 (1 0) [false] [2 0]]] …=?… eq? :test ((+0b) =? (+0b)) (true) :test ([[[1 (0 2)]]] =? [[[1 (0 2)]]]) (true) :test ([[[1 (0 2)]]] =? (+2b)) (false) # returns true if two binary numbers are not equal not-eq? not! ∘∘ eq? ⧗ Binary → Binary → Boolean …≠?… not-eq? :test ((+0b) ≠? (+0b)) (false) :test ([[[1 (0 2)]]] ≠? [[[1 (0 2)]]]) (false) :test ([[[1 (0 2)]]] ≠? (+2b)) (true) # adds 1 to a binary number (can introduce leading 0s) inc [~(0 z a¹ a⁰)] ⧗ Binary → Binary z (+0b) : (+1b) a¹ [0 [[↑¹1 : ↑⁰0]]] a⁰ [0 [[↑⁰1 : ↑¹1]]] ++‣ inc :test (++(+0b)) ((+1b)) :test (++(+2b)) ((+3b)) # subs 1 from a binary number (can introduce leading 0s) dec [~(0 z a¹ a⁰)] ⧗ Binary → Binary z (+0b) : (+0b) a¹ [0 [[↑¹1 : ↑⁰1]]] a⁰ [0 [[↑⁰1 : ↑¹0]]] --‣ dec :test (--(+0b)) ((+0b)) :test (--(+1b)) ([[[0 2]]]) :test (--(+3b)) ((+2b)) # adds two binary numbers (can introduce leading 0s) # second argument gets abstracted (performance) add [[abs 1 →^0]] ⧗ Binary → Binary → Binary abs [c (0 z a¹ a⁰)] c¹ [1 ↑⁰(3 0 b¹) ↑¹(3 0 b⁰)] a¹ [[[1 (c¹ 1) c¹' c¹]]] c¹' [up 1 (3 0 b¹)] a⁰ [[[1 (c⁰ 1) c¹ c⁰]]] c⁰ [up 1 (3 0 b⁰)] z [[0 ++(→_1) →_1]] c [[1 0 b⁰]] …+… add :test (((+0b) + (+0b)) =? (+0b)) (true) :test (((+0b) + (+3b)) =? (+3b)) (true) :test (((+1b) + (+2b)) =? (+3b)) (true) :test (((+42b) + (+1b)) =? (+43b)) (true) # subs two binary numbers (can introduce leading 0s) # second argument gets abstracted (performance) sub [[abs 1 →^0]] ⧗ Binary → Binary → Binary abs [c (0 z a¹ a⁰)] a¹ [[[1 (c¹ 1) c¹' c¹]]] c¹ [1 ↑⁰(3 0 b¹) ↑¹(3 0 b⁰)] c¹' [1 ↑¹(3 0 b⁰) ↑¹(3 0 b⁰)] a⁰ [[[1 (c⁰ 1) c⁰' c⁰]]] c⁰ [1 ↑¹(3 0 b⁰) ↑⁰(3 0 b⁰)] c⁰' [1 (3 0 b⁰) ↑¹(3 0 b¹)] z [[0 --(→_1) →_1]] c [[1 0 b⁰]] …-… sub :test ((+5b) - (+0b)) ((+5b)) :test ((+8b) - (+3b)) ((+5b)) :test ((+10b) - (+5b)) ((+5b)) :test (((+20b) - (+1b))) ((+19b)) # :test (%((+20b) - (+0b))) ((+20b)) # :test (%((+20b) - (+1b))) ((+19b)) # :test (%((+19b) - (+1b))) ((+18b)) # :test (%((+19b) - (+2b))) ((+17b)) # :test (%((+18b) - (+2b))) ((+16b)) # :test (%((+18b) - (+3b))) ((+15b)) # :test (%((+17b) - (+3b))) ((+14b)) # :test (%((+17b) - (+4b))) ((+13b)) # :test (%((+16b) - (+4b))) ((+12b)) # :test (%((+16b) - (+5b))) ((+11b)) # :test (%((+15b) - (+5b))) ((+10b)) # :test (%((+15b) - (+6b))) ((+9b)) # :test (%((+14b) - (+6b))) ((+8b)) # :test (%((+14b) - (+7b))) ((+7b)) # :test (%((+13b) - (+7b))) ((+6b)) # :test (%((+13b) - (+8b))) ((+5b)) # :test (%((+12b) - (+8b))) ((+4b)) # :test (%((+12b) - (+9b))) ((+3b)) # :test (%((+11b) - (+9b))) ((+2b)) # :test (%((+11b) - (+10b))) ((+1b)) # :test (%((+10b) - (+10b))) ((+0b))