# MIT License, Copyright (c) 2022 Marvin Borner # Lists in Church/Boehm-Berarducci encoding using pairs # implementations are generally lazy (except when they're broken) # TODO: Replace fold/map/etc. with faster LC native logic :import std/Combinator . :import std/Pair P :import std/Logic . :import std/Number/Ternary . # empty list element empty false ⧗ (List a) # returns true if a list is empty empty? [0 [[[false]]] true] ⧗ (List a) → Boolean ∅?‣ empty? :test (∅?empty) (true) # creates list with single element singleton [P.pair 0 empty] ⧗ a → (List a) {}‣ singleton # prepends an element to a list cons P.pair ⧗ a → (List a) → (List a) …:… cons :test ((+1) : {}(+2)) (P.pair (+1) (P.pair (+2) empty)) :test (∅?({}(+2))) (false) # returns the head of a list or empty head P.fst ⧗ (List a) → a ^‣ head :test (^((+1) : {}(+2))) ((+1)) # returns the tail of a list or empty tail P.snd ⧗ (List a) → (List a) ~‣ tail :test (~((+1) : {}(+2))) ({}(+2)) # returns the length of a list in balanced ternary length z [[[rec]]] (+0) ⧗ (List a) → Number rec ∅?0 case-end case-inc case-inc 2 ++1 ~0 case-end 1 ∀‣ length :test (∀((+1) : {}(+2))) ((+2)) :test (∀empty) ((+0)) # returns the element at index in list index z [[[rec]]] ⧗ (List a) → Number → a rec ∅?0 case-end case-index case-index =?1 ^0 (2 --1 ~0) case-end empty …!!… \index :test (((+1) : ((+2) : {}(+3))) !! (+0)) ((+1)) :test (((+1) : ((+2) : {}(+3))) !! (+2)) ((+3)) :test (((+1) : ((+2) : {}(+3))) !! (-1)) (empty) :test (((+1) : ((+2) : {}(+3))) !! (+3)) (empty) # constructs a list of successively reduced values scanl z [[[[1 : rec]]]] ⧗ (b → a → b) → b → (List a) → (List b) rec ∅?0 case-end case-scan case-scan 3 2 (2 1 ^0) ~0 case-end 0 :test (scanl …+… (+0) ((+1) : ((+2) : {}(+3)))) ((+0) : ((+1) : ((+3) : {}(+6)))) # applies a left fold on a list foldl z [[[[rec]]]] ⧗ (b → a → b) → b → (List a) → b rec ∅?0 case-end case-fold case-fold 3 2 (2 1 ^0) ~0 case-end 1 :test ((foldl …+… (+0) ((+1) : ((+2) : {}(+3)))) =? (+6)) (true) :test ((foldl …-… (+6) ((+1) : ((+2) : {}(+3)))) =? (+0)) (true) # foldl without starting value foldl1 [[foldl 1 ^0 ~0]] ⧗ (a → a → a) → (List a) → a # applies a right fold on a list foldr [[[z [[rec]] 0]]] ⧗ (a → b → b) → b → (List b) → b rec ∅?0 case-end case-fold case-fold 4 ^0 (1 ~0) case-end 3 :test ((foldr …+… (+0) ((+1) : ((+2) : {}(+3)))) =? (+6)) (true) :test ((foldr …-… (+2) ((+1) : ((+2) : {}(+3)))) =? (+0)) (true) # foldr without starting value foldr1 [[foldl 1 ^0 ~0]] ⧗ (a → a → a) → (List a) → a # applies or to all list elements lor? foldr or? false ⧗ (List Boolean) → Boolean ⋁?‣ lor? :test (⋁?(true : {}true)) (true) :test (⋁?(true : {}false)) (true) :test (⋁?(false : {}false)) (false) # applies and to all list elements land? foldr and? true ⧗ (List Boolean) → Boolean ⋀?‣ land? :test (⋀?(true : {}true)) (true) :test (⋀?(true : {}false)) (false) :test (⋀?(false : {}false)) (false) # reverses a list reverse foldl \cons empty ⧗ (List a) → (List a) <~>‣ reverse :test (<~>((+1) : ((+2) : {}(+3)))) ((+3) : ((+2) : {}(+1))) # creates list out of n terms # TODO: use balanced ternary # TODO: fix/remove incorrect type? list [0 [[[2 (0 : 1)]]] reverse empty] ⧗ (List a) → Unary → b → (List b) # appends two lists append z [[[rec]]] ⧗ (List a) → (List a) → (List a) rec ∅?1 case-end case-append case-append ^1 : (2 ~1 0) case-end 0 …++… append :test ({}(+1) ++ empty) ({}(+1)) :test (empty ++ {}(+1)) ({}(+1)) :test (empty ++ empty) (empty) :test (((+1) : ((+2) : {}(+3))) ++ {}(+4)) ((+1) : ((+2) : ((+3) : {}(+4)))) # appends an element to a list snoc [[1 ++ {}0]] ⧗ (List a) → a → (List a) …;… snoc :test (empty ; (+1)) ({}(+1)) :test ({}(+1) ; (+2)) ((+1) : {}(+2)) # maps each element to a function map z [[[rec]]] ⧗ (a → b) → (List a) → (List b) rec ∅?0 case-end case-map case-map (1 ^0) : (2 1 ~0) case-end empty …<$>… map :test (++‣ <$> ((+1) : ((+2) : {}(+3)))) ((+2) : ((+3) : {}(+4))) # filters a list based on a predicate filter z [[[rec]]] ⧗ (a → Boolean) → (List a) → (List a) rec ∅?0 case-end case-filter case-filter 1 ^0 (cons ^0) i (2 1 ~0) case-end empty …<#>… \filter :test (((+1) : ((+0) : {}(+3))) <#> zero?) ({}(+0)) # returns the last element of a list # - slow algorithm: # last z [[rec]] # rec ∅?0 case-end case-last # case-last ∅?(~0) ^0 (1 ~0) # case-end empty # - taking the first element of the reversed list is actually way faster because laziness last ^‣ ∘ <~>‣ ⧗ (List a) → a _‣ last :test (_((+1) : ((+2) : {}(+3)))) ((+3)) # returns everything but the last element of a list init z [[rec]] ⧗ (List a) → (List a) rec ∅?0 case-end case-init case-init ∅?(~0) empty (^0 : (1 ~0)) case-end empty :test (init ((+1) : ((+2) : {}(+3)))) ((+1) : {}(+2)) # concatenates a list of lists to one list concat foldr append empty ⧗ (List a) → (List a) → (List a) :test (concat (((+1) : {}(+2)) : {}((+3) : {}(+4)))) ((+1) : ((+2) : ((+3) : {}(+4)))) :test (concat ("a" : {}"b")) ("ab") # maps a function returning list of list and concatenates concat-map concat ∘∘ map ⧗ (a → (List b)) → (List a) → (List b) :test (concat-map [-0 : {}0] ((+1) : {}(+2))) ((-1) : ((+1) : ((-2) : {}(+2)))) # zips two lists discarding excess elements zip z [[[rec]]] ⧗ (List a) → (List b) → (List (Pair a b)) rec (∅?1 ⋁? ∅?0) case-end case-zip case-zip (^1 : ^0) : (2 ~1 ~0) case-end empty :test (zip ((+1) : {}(+2)) ((+2) : {}(+1))) (((+1) : (+2)) : {}((+2) : (+1))) # zips three lists discarding excess elements # TODO: add/use triple type (list element types can be different) zip3 z [[[[rec]]]] ⧗ (List a) → (List a) → (List a) → (List (List a)) rec (∅?2 ⋁? ∅?1 ⋁? ∅?0) case-end case-zip case-zip (^2 : (^1 : {}(^0))) : (3 ~2 ~1 ~0) case-end empty :test (zip3 ((+1) : {}(+2)) ((+2) : {}(+1)) ((+3) : {}(+0))) (((+1) : ((+2) : {}(+3))) : {}((+2) : ((+1) : {}(+0)))) # applies pairs of the zipped list as arguments to a function zip-with z [[[[rec]]]] ⧗ (a → b → c) → (List a) → (List b) → (List c) rec ∅?1 case-end case-zip case-zip ∅?0 empty ((2 ^1 ^0) : (3 2 ~1 ~0)) case-end empty :test (zip-with …+… ((+1) : {}(+2)) ((+2) : {}(+1))) ((+3) : {}(+3)) # list comprehension {…|…} map ⧗ (a → b) → (List a) → (List b) :test ({ ++‣ | ((+0) : {}(+2)) }) ((+1) : {}(+3)) # doubled list comprehension {…|…,…} zip-with ⧗ (a → b → c) → (List a) → (List b) → (List c) :test ({ …+… | ((+0) : {}(+2)) , ((+1) : {}(+3)) }) ((+1) : {}(+5)) # returns first n elements of a list take z [[[rec]]] ⧗ Number → (List a) → (List a) rec ∅?0 case-end case-take case-take =?1 empty (^0 : (2 --1 ~0)) case-end empty :test (take (+2) ((+1) : ((+2) : {}(+3)))) ((+1) : {}(+2)) # takes elements while a predicate is satisfied take-while z [[[rec]]] ⧗ (a → Boolean) → (List a) → (List a) rec ∅?0 case-end case-take case-take 1 ^0 (^0 : (2 1 ~0)) empty case-end empty :test (take-while zero? ((+0) : ((+0) : {}(+1)))) ((+0) : {}(+0)) # removes first n elements of a list drop z [[[rec]]] ⧗ Number → (List a) → (List a) rec ∅?0 case-end case-drop case-drop =?1 0 (2 --1 ~0) case-end empty :test (drop (+2) ((+1) : ((+2) : {}(+3)))) ({}(+3)) # removes elements from list while a predicate is satisfied drop-while z [[[rec]]] ⧗ (a → Boolean) → (List a) → (List a) rec ∅?0 case-end case-drop case-drop 1 ^0 (2 1 ~0) 0 case-end empty :test (drop-while zero? ((+0) : ((+0) : {}(+1)))) ({}(+1)) # returns all combinations of two lists cross [[concat-map [map [1 : 0] 1] 1]] ⧗ (List a) → (List b) → (List (Pair a b)) :test (cross "ab" "cd") (('a' : 'c') : (('a' : 'd') : (('b' : 'c') : {}('b' : 'd')))) # returns all combinations of three lists # TODO: add/use triple type (list element types can be different) cross3 [[[concat-map [concat-map [map [2 : (1 : {}0)] 2] 2] 2]]] ⧗ (List a) → (List a) → (List a) → (List (List a)) # :test (cross "ab" "cd") (('a' : 'c') : (('a' : 'd') : (('b' : 'c') : {}('b' : 'd')))) # returns pair of take-while and drop-while span [[(take-while 1 0) : (drop-while 1 0)]] ⧗ (a → Boolean) → (List a) → (Pair (List a) (List a)) :test (span (\les? (+3)) ((+1) : ((+2) : ((+4) : {}(+1))))) (((+1) : {}(+2)) : ((+4) : {}(+1))) # same as span but with inverted predicate # slower but equivalent: span ∘ (…∘… ¬‣) break [[left : right]] ⧗ (a → Boolean) → (List a) → (Pair (List a) (List a)) left take-while (¬‣ ∘ 1) 0 right drop-while (¬‣ ∘ 1) 0 :test (break (\gre? (+3)) ((+1) : ((+2) : ((+4) : {}(+1))))) (((+1) : {}(+2)) : ((+4) : {}(+1))) # groups list by eq predicate group-by z [[[rec]]] ⧗ (a → a → Boolean) → (List a) → (List (List a)) rec ∅?0 case-end case-group case-group build (span (1 ^0) ~0) build [(^1 : ^0) : (3 2 ~0)] case-end empty :test (group-by [[(0 - 1) (\les? ^0) greater ~0 <#> (\geq? ^0) case-end empty :test (sort-asc ((+3) : ((+2) : {}(+1)))) ((+1) : ((+2) : {}(+3))) # sorts a list of numbers in descending order using non-inplace (obviously) quicksort sort-desc z [[rec]] rec ∅?0 case-end case-sort case-sort (1 greater) ++ {}(^0) ++ (1 lesser) greater ~0 <#> (\geq? ^0) lesser ~0 <#> (\les? ^0) case-end empty :test (sort-desc ((+1) : ((+2) : {}(+3)))) ((+3) : ((+2) : {}(+1))) # inserts an element into a ascendingly sorted list insert-sorted [go ∘ (span (\les? 0))] go [^0 ++ (1 : ~0)] :test (insert-sorted (+3) ((+1) : ((+2) : {}(+4)))) ((+1) : ((+2) : ((+3) : {}(+4)))) # returns true if any element in a list matches a predicate any? ⋁?‣ ∘∘ map ⧗ (a → Boolean) → (List a) → Boolean :test (any? (\gre? (+2)) ((+1) : ((+2) : {}(+3)))) (true) :test (any? (\gre? (+2)) ((+1) : ((+2) : {}(+2)))) (false) # returns true if all elements in a list match a predicate all? ⋀?‣ ∘∘ map ⧗ (a → Boolean) → (List a) → Boolean :test (all? (\gre? (+2)) ((+3) : ((+4) : {}(+5)))) (true) :test (all? (\gre? (+2)) ((+4) : ((+3) : {}(+2)))) (false) # returns true if element is part of a list based on eq predicate in? …∘… any? ⧗ (a → a → Boolean) → a → (List a) → Boolean :test (in? …=?… (+3) ((+1) : ((+2) : {}(+3)))) (true) :test (in? …=?… (+0) ((+1) : ((+2) : {}(+3)))) (false) # returns true if all elements of one list are equal to corresponding elements of other list eq? ⋀?‣ ∘∘∘ zip-with ⧗ (a → a → Boolean) → (List a) → Boolean :test (eq? …=?… ((+1) : {}(+2)) ((+1) : {}(+2))) (true) :test (eq? …=?… ((+1) : {}(+2)) ((+2) : {}(+2))) (false) :test (eq? …=?… empty empty) (true) # finds the first index that matches a predicate find-index z [[[rec]]] ⧗ (a → Boolean) → (List a) → Number rec ∅?0 case-end case-find case-find (1 ^0) (+0) !(2 1 ~0) !‣ [ [¬(2 0 ^1)])) case-end empty :test (nub …=?… ((+1) : ((+2) : {}(+3)))) ((+1) : ((+2) : {}(+3))) :test (nub …=?… ((+1) : ((+2) : {}(+1)))) ((+1) : {}(+2)) # returns a list with infinite-times an element repeat z [[rec]] ⧗ a → (List a) rec 0 : (1 0) :test (take (+3) (repeat (+4))) ((+4) : ((+4) : {}(+4))) # returns a list with n-times an element replicate \(g take repeat) ⧗ Number → a → (List a) :test (replicate (+3) (+4)) ((+4) : ((+4) : {}(+4))) # pads a list at end until its length is n pad-right [[[0 ++ (replicate |(2 - ∀0) 1)]]] ⧗ Number → a → (List a) → (List a) :test (pad-right (+6) 'a' "hah") ("hahaaa") # pads a list at start until its length is n pad-left [[[(replicate (2 - ∀0) 1) ++ 0]]] ⧗ Number → a → (List a) → (List a) :test (pad-left (+6) 'a' "hah") ("aaahah") # returns an infinite list repeating a finite list cycle z [[rec]] ⧗ (List a) → (List a) rec 0 ++ (1 0) :test (take (+6) (cycle "ab")) ("ababab") # returns a list with infinite-times previous (or start) value applied to a function iterate z [[[rec]]] ⧗ (a → a) → a → (List a) rec 0 : (2 1 (1 0)) :test (take (+5) (iterate ++‣ (+0))) (((+0) : ((+1) : ((+2) : ((+3) : {}(+4)))))) :test (take (+2) (iterate (%‣ ∘ dec) (+5))) (((+5) : {}(+4))) :test (take (+5) (iterate i (+4))) (take (+5) (repeat (+4))) :test (take (+0) (iterate ++‣ (+0))) (empty)