# MIT License, Copyright (c) 2022 Marvin Borner # Lists in Church/Boehm-Berarducci encoding using pairs # implementations are generally lazy (except when they're broken) # TODO: look into https://hbr.github.io/Lambda-Calculus/lambda2/lambda.html#lists, has more elegant mapping :import std/Combinator . :import std/Pair P :import std/Logic . :import std/Number/Ternary . :import std/Box B # empty list element empty false ⧗ (List a) # returns true if a list is empty # can generally be omitted: ∅?c foo bar = c [[[bar]]] foo empty? [0 [[[false]]] true] ⧗ (List a) → Boolean ∅?‣ empty? :test (∅?empty) (true) # creates list with single element singleton [P.pair 0 empty] ⧗ a → (List a) {}‣ singleton # prepends an element to a list cons P.pair ⧗ a → (List a) → (List a) …:… cons :test ((+1) : {}(+2)) (P.pair (+1) (P.pair (+2) empty)) :test (∅?({}(+2))) (false) # returns the head of a list or empty head P.fst ⧗ (List a) → a ^‣ head :test (^((+1) : {}(+2))) ((+1)) # returns the tail of a list or empty tail P.snd ⧗ (List a) → (List a) ~‣ tail :test (~((+1) : {}(+2))) ({}(+2)) # returns the length of a list in balanced ternary length z [[[rec]]] (+0) ⧗ (List a) → Number rec 0 [[[case-inc]]] case-end case-inc 5 ++4 1 case-end 1 ∀‣ length :test (∀((+1) : {}(+2))) ((+2)) :test (∀empty) ((+0)) # applies each element of a list to a function (left-associative) apply z [[[rec]]] ⧗ (a* → b) → (List a) → b rec 0 [[[case-app]]] case-end case-app 5 (4 2) 1 case-end 1 …?(2 1 0) 1 0]] :test (max-by (compare ⋔ length) ("abc" : ("ab" : {}"abcd"))) ("abcd") # smallest element by compare function min-by [foldl1 min'] ⧗ (a → a → Number) → (List a) → a min' [[‣ reverse :test (<~>((+1) : ((+2) : {}(+3)))) ((+3) : ((+2) : {}(+1))) # appends two lists (Tromp) append &(z [[[[[0 3 (2 4 1)]]]]]) ⧗ (List a) → (List a) → (List a) …++… append :test ({}(+1) ++ empty) ({}(+1)) :test (empty ++ {}(+1)) ({}(+1)) :test (empty ++ empty) (empty) :test (((+1) : ((+2) : {}(+3))) ++ {}(+4)) ((+1) : ((+2) : ((+3) : {}(+4)))) # appends an element to a list snoc [[1 ++ {}0]] ⧗ (List a) → a → (List a) …;… snoc :test (empty ; (+1)) ({}(+1)) :test ({}(+1) ; (+2)) ((+1) : {}(+2)) # generates a variadic box-based function from a list-based function # TODO: Find a solution that does not require boxed terms variadic [[y [[[[rec]]]] 1 0 [[0]]]] ⧗ ((List a) → b) → ((Box a)* → (Box c) → b) rec B.∅?1 (2 0) [4 3 0 (1 ; (B.get i 2))] :test (variadic reverse B.<>(+1) B.<>(+2) B.<>(+3) B.empty) ((+3) : ((+2) : {}(+1))) # constructs list out of boxed terms, ended with an empty box list variadic i ⧗ (Box a)* → (Box b) → (List a) :test (list B.<>(+2) B.<>(+3) B.empty) ((+2) : {}(+3)) :test (^(list B.<>(+2) B.<>(+3))) ((+2) : {}(+3)) # maps each element to a function map z [[[rec]]] ⧗ (a → b) → (List a) → (List b) rec 0 [[[case-map]]] case-end case-map (4 2) : (5 4 1) case-end empty …<$>… map :test (++‣ <$> ((+1) : ((+2) : {}(+3)))) ((+2) : ((+3) : {}(+4))) # filters a list based on a predicate filter z [[[rec]]] ⧗ (a → Boolean) → (List a) → (List a) rec 0 [[[case-filter]]] case-end case-filter 4 2 (cons 2) i (5 4 1) case-end empty …<#>… \filter :test (((+1) : ((+0) : {}(+3))) <#> zero?) ({}(+0)) # returns the last element of a list last ^‣ ∘ <~>‣ ⧗ (List a) → a _‣ last :test (_((+1) : ((+2) : {}(+3)))) ((+3)) # returns everything but the last element of a list init z [[rec]] ⧗ (List a) → (List a) rec 0 [[[case-init]]] case-end case-init 1 [[[5 : (7 4)]]] empty case-end empty :test (init ((+1) : ((+2) : {}(+3)))) ((+1) : {}(+2)) # concatenates a list of lists to one list concat foldr append empty ⧗ (List a) → (List a) → (List a) :test (concat (((+1) : {}(+2)) : {}((+3) : {}(+4)))) ((+1) : ((+2) : ((+3) : {}(+4)))) :test (concat ("a" : {}"b")) ("ab") # maps a function returning list of list and concatenates concat-map concat ∘∘ map ⧗ (a → (List b)) → (List a) → (List b) …<++>… concat-map :test ([-0 : {}0] <++> ((+1) : {}(+2))) ((-1) : ((+1) : ((-2) : {}(+2)))) # zips two lists discarding excess elements zip z [[[rec]]] ⧗ (List a) → (List b) → (List (Pair a b)) rec (∅?1 ⋁? ∅?0) case-end case-zip case-zip (^1 : ^0) : (2 ~1 ~0) case-end empty :test (zip ((+1) : {}(+2)) ((+2) : {}(+1))) (((+1) : (+2)) : {}((+2) : (+1))) # zips three lists discarding excess elements # TODO: add/use triple type (list element types can be different) zip3 z [[[[rec]]]] ⧗ (List a) → (List a) → (List a) → (List (List a)) rec (∅?2 ⋁? ∅?1 ⋁? ∅?0) case-end case-zip case-zip (^2 : (^1 : {}(^0))) : (3 ~2 ~1 ~0) case-end empty :test (zip3 ((+1) : {}(+2)) ((+2) : {}(+1)) ((+3) : {}(+0))) (((+1) : ((+2) : {}(+3))) : {}((+2) : ((+1) : {}(+0)))) # applies pairs of the zipped list as arguments to a function zip-with z [[[[rec]]]] ⧗ (a → b → c) → (List a) → (List b) → (List c) rec 1 [[[case-zip]]] case-end case-zip 3 [[[(8 5 2) : (9 8 4 1)]]] empty case-end empty :test (zip-with …+… ((+1) : {}(+2)) ((+2) : {}(+1))) ((+3) : {}(+3)) # list comprehension {…|…} map ⧗ (a → b) → (List a) → (List b) :test ({ ++‣ | ((+0) : {}(+2)) }) ((+1) : {}(+3)) # doubled list comprehension {…|…;…} zip-with ⧗ (a → b → c) → (List a) → (List b) → (List c) :test ({ …+… | ((+0) : {}(+2)) ; ((+1) : {}(+3)) }) ((+1) : {}(+5)) # returns first n elements of a list take z [[[rec]]] ⧗ Number → (List a) → (List a) rec 0 [[[case-take]]] case-end case-take =?4 empty (2 : (5 --4 1)) case-end empty :test (take (+2) ((+1) : ((+2) : {}(+3)))) ((+1) : {}(+2)) # takes elements while a predicate is satisfied take-while z [[[rec]]] ⧗ (a → Boolean) → (List a) → (List a) rec 0 [[[case-take]]] case-end case-take 4 2 (2 : (5 4 1)) empty case-end empty :test (take-while zero? ((+0) : ((+0) : {}(+1)))) ((+0) : {}(+0)) # removes first n elements of a list drop z [[[rec]]] ⧗ Number → (List a) → (List a) rec 0 [[[case-drop]]] case-end case-drop =?4 3 (5 --4 1) case-end empty :test (drop (+2) ((+1) : ((+2) : {}(+3)))) ({}(+3)) # removes elements from list while a predicate is satisfied drop-while z [[[rec]]] ⧗ (a → Boolean) → (List a) → (List a) rec 0 [[[case-drop]]] case-end case-drop 4 2 (5 4 1) 3 case-end empty :test (drop-while zero? ((+0) : ((+0) : {}(+1)))) ({}(+1)) # returns all combinations of two lists cross [[[[1 : 0] <$> 1] <++> 1]] ⧗ (List a) → (List b) → (List (Pair a b)) :test (cross "ab" "cd") (('a' : 'c') : (('a' : 'd') : (('b' : 'c') : {}('b' : 'd')))) # returns all combinations of three lists # TODO: add/use triple type (list element types can be different) cross3 [[[[[[2 : (1 : {}0)] <$> 2] <++> 2] <++> 2]]] ⧗ (List a) → (List a) → (List a) → (List (List a)) # :test (cross "ab" "cd") (('a' : 'c') : (('a' : 'd') : (('b' : 'c') : {}('b' : 'd')))) # returns pair of take-while and drop-while span [[(take-while 1 0) : (drop-while 1 0)]] ⧗ (a → Boolean) → (List a) → (Pair (List a) (List a)) :test (span (\les? (+3)) ((+1) : ((+2) : ((+4) : {}(+1))))) (((+1) : {}(+2)) : ((+4) : {}(+1))) # same as span but with inverted predicate # slower but equivalent: span ∘ (…∘… ¬‣) break [[left : right]] ⧗ (a → Boolean) → (List a) → (Pair (List a) (List a)) left take-while (¬‣ ∘ 1) 0 right drop-while (¬‣ ∘ 1) 0 :test (break (\gre? (+3)) ((+1) : ((+2) : ((+4) : {}(+1))))) (((+1) : {}(+2)) : ((+4) : {}(+1))) # groups list by eq predicate group-by z [[[rec]]] ⧗ (a → a → Boolean) → (List a) → (List (List a)) rec 0 [[[case-group]]] case-end case-group build (span (4 2) 1) build [(3 : ^0) : (6 5 ~0)] case-end empty :test (group-by [[(0 - 1) (\les? 2) greater 1 <#> (\geq? 2) case-end empty :test (sort-asc ((+3) : ((+2) : {}(+1)))) ((+1) : ((+2) : {}(+3))) # sorts a list of numbers in descending order using non-inplace (obviously) quicksort sort-desc z [[rec]] rec 0 [[[case-sort]]] case-end case-sort (4 greater) ++ {}(2) ++ (4 lesser) greater 1 <#> (\geq? 2) lesser 1 <#> (\les? 2) case-end empty :test (sort-desc ((+1) : ((+2) : {}(+3)))) ((+3) : ((+2) : {}(+1))) # inserts an element into a ascendingly sorted list insert-sorted [go ∘ (span (\les? 0))] go [^0 ++ (1 : ~0)] :test (insert-sorted (+3) ((+1) : ((+2) : {}(+4)))) ((+1) : ((+2) : ((+3) : {}(+4)))) # returns true if any element in a list matches a predicate any? ⋁?‣ ∘∘ map ⧗ (a → Boolean) → (List a) → Boolean :test (any? (\gre? (+2)) ((+1) : ((+2) : {}(+3)))) (true) :test (any? (\gre? (+2)) ((+1) : ((+2) : {}(+2)))) (false) # returns true if all elements in a list match a predicate all? ⋀?‣ ∘∘ map ⧗ (a → Boolean) → (List a) → Boolean :test (all? (\gre? (+2)) ((+3) : ((+4) : {}(+5)))) (true) :test (all? (\gre? (+2)) ((+4) : ((+3) : {}(+2)))) (false) # returns true if element is part of a list based on eq predicate in? …∘… any? ⧗ (a → a → Boolean) → a → (List a) → Boolean :test (in? …=?… (+3) ((+1) : ((+2) : {}(+3)))) (true) :test (in? …=?… (+0) ((+1) : ((+2) : {}(+3)))) (false) # returns true if all elements of one list are equal to corresponding elements of other list eq? ⋀?‣ ∘∘∘ zip-with ⧗ (a → a → Boolean) → (List a) → Boolean :test (eq? …=?… ((+1) : {}(+2)) ((+1) : {}(+2))) (true) :test (eq? …=?… ((+1) : {}(+2)) ((+2) : {}(+2))) (false) :test (eq? …=?… empty empty) (true) # finds the first index that matches a predicate find-index z [[[rec]]] ⧗ (a → Boolean) → (List a) → Number rec 0 [[[case-find]]] case-end case-find (4 2) (+0) !(5 4 1) !‣ [ [¬(5 0 3)])) case-end empty :test (nub …=?… ((+1) : ((+2) : {}(+3)))) ((+1) : ((+2) : {}(+3))) :test (nub …=?… ((+1) : ((+2) : {}(+1)))) ((+1) : {}(+2)) # returns a list with infinite-times an element repeat z [[rec]] ⧗ a → (List a) rec 0 : (1 0) :test (take (+3) (repeat (+4))) ((+4) : ((+4) : {}(+4))) # returns a list with n-times an element replicate \(g take repeat) ⧗ Number → a → (List a) :test (replicate (+3) (+4)) ((+4) : ((+4) : {}(+4))) # pads a list at end until its length is n pad-right [[[0 ++ (replicate |(2 - ∀0) 1)]]] ⧗ Number → a → (List a) → (List a) :test (pad-right (+6) 'a' "hah") ("hahaaa") # pads a list at start until its length is n pad-left [[[(replicate (2 - ∀0) 1) ++ 0]]] ⧗ Number → a → (List a) → (List a) :test (pad-left (+6) 'a' "hah") ("aaahah") # returns an infinite list repeating a finite list cycle z [[rec]] ⧗ (List a) → (List a) rec 0 ++ (1 0) :test (take (+6) (cycle "ab")) ("ababab") # returns a list with infinite-times previous (or start) value applied to a function iterate z [[[rec]]] ⧗ (a → a) → a → (List a) rec 0 : (2 1 (1 0)) :test (take (+5) (iterate ++‣ (+0))) (((+0) : ((+1) : ((+2) : ((+3) : {}(+4)))))) :test (take (+2) (iterate (%‣ ∘ dec) (+5))) (((+5) : {}(+4))) :test (take (+5) (iterate i (+4))) (take (+5) (repeat (+4))) :test (take (+0) (iterate ++‣ (+0))) (empty) # calculates all fixed points of a given function as a list y* [[[0 1] <$> 0] xs] ⧗ a → (List b) xs [[1 0)]] <$> 0 :test (&(+5) <$> (y* ([[[=?0 true (1 --0)]]] : {}[[[=?0 false (2 --0)]]]))) (false : {}true)