# MIT License, Copyright (c) 2022 Marvin Borner # Lists in Church/Boehm-Berarducci encoding using pairs :import std/Combinator . :import std/Pair P :import std/Logic . :import std/Number . # empty list element empty false # returns whether a list is empty empty? [0 [[[false]]] true] <>?( empty? :test (<>?empty) (true) :test (<>?(cons (+2) empty)) (false) # prepends an element to a list cons P.pair (:) cons :test ((+1) : ((+2) : empty)) (P.pair (+1) (P.pair (+2) empty)) :test ('a' : ('b' : ('c' : empty))) ("abc") # returns the head of a list or empty head P.fst ^( head :test (^((+1) : ((+2) : empty))) ((+1)) # returns the tail of a list or empty tail P.snd ~( tail :test (~((+1) : ((+2) : empty))) ((+2) : empty) # returns the length of a list in balanced ternary length Z [[[case-some]]] case-empty case-some <>?0 case-end case-inc case-inc 2 ++1 ~0 case-end 1 case-empty (+0) #( length :test (#((+1) : ((+2) : empty))) ((+2)) :test (#empty) ((+0)) # returns the element at index in list index Z [[[case-some]]] case-some <>?0 case-end case-index case-index =?1 ^0 (2 --1 ~0) case-end empty (!!) \index :test (((+1) : ((+2) : ((+3) : empty))) !! (+0)) ((+1)) :test (((+1) : ((+2) : ((+3) : empty))) !! (+2)) ((+3)) :test (((+1) : ((+2) : ((+3) : empty))) !! (-1)) (empty) :test (((+1) : ((+2) : ((+3) : empty))) !! (+3)) (empty) # applies a left fold on a list foldl Z [[[[case-some]]]] case-some <>?0 case-end case-fold case-fold 3 2 (2 1 ^0) ~0 case-end 1 :test ((foldl add (+0) ((+1) : ((+2) : ((+3) : empty)))) =? (+6)) (true) :test ((foldl sub (+6) ((+1) : ((+2) : ((+3) : empty)))) =? (+0)) (true) # foldl without starting value foldl1 [[foldl 1 ^0 ~0]] # applies a right fold on a list foldr [[[Z [[case-some]] case-empty]]] case-some <>?0 case-end case-fold case-fold 4 ^0 (1 ~0) case-end 3 case-empty 0 :test ((foldr add (+0) ((+1) : ((+2) : ((+3) : empty)))) =? (+6)) (true) :test ((foldr sub (+2) ((+1) : ((+2) : ((+3) : empty)))) =? (+0)) (true) # foldr without starting value foldr1 [[foldl 1 ^0 ~0]] # applies or to all list elements lor? foldr or? false ||( lor? :test (||(true : (true : empty))) (true) :test (||(true : (false : empty))) (true) :test (||(false : (false : empty))) (false) # applies and to all list elements land? foldr and? true &&( land? :test (&&(true : (true : empty))) (true) :test (&&(true : (false : empty))) (false) :test (&&(false : (false : empty))) (false) # multiplies all values in list product foldl mul (+1) Π product :test (Π ((+1) : ((+2) : ((+3) : empty)))) ((+6)) # adds all values in list sum foldl add (+0) Σ sum :test (Σ ((+1) : ((+2) : ((+3) : empty)))) ((+6)) # returns max value of list lmax foldl1 max :test (lmax ((+1) : ((+3) : ((+2) : empty)))) ((+3)) # returns min value of list lmin foldl1 min :test (lmin ((+2) : ((+1) : ((+0) : empty)))) ((+0)) # reverses a list reverse foldl \cons empty <~>( reverse :test (<~>((+1) : ((+2) : ((+3) : empty)))) ((+3) : ((+2) : ((+1) : empty))) # creates list out of n terms # TODO: fix for balanced ternary list [0 [[[2 (0 : 1)]]] reverse empty] # appends two lists append Z [[[case-some]]] case-some <>?1 case-end case-merge case-merge ^1 : (2 ~1 0) case-end 0 (++) append :test (((+1) : ((+2) : ((+3) : empty))) ++ ((+4) : empty)) ((+1) : ((+2) : ((+3) : ((+4) : empty)))) # appends an element to a list snoc [[1 ++ (0 : empty)]] (;) snoc :test (empty ; (+1)) ((+1) : empty) :test (((+1) : empty) ; (+2)) ((+1) : ((+2) : empty)) # maps each element to a function map Z [[[case-some]]] case-some <>?0 case-end case-map case-map (1 ^0) : (2 1 ~0) case-end empty (<$>) map :test (inc <$> ((+1) : ((+2) : ((+3) : empty)))) ((+2) : ((+3) : ((+4) : empty))) # filters a list based on a predicate filter Z [[[case-some]]] case-some <>?0 case-end case-filter case-filter 1 ^0 (cons ^0) I (2 1 ~0) case-end empty (<#>) \filter :test (((+1) : ((+0) : ((+3) : empty))) <#> zero?) ((+0) : empty) # returns the last element of a list last Z [[case-some]] case-some <>?0 case-end case-last case-last <>?(~0) ^0 (1 ~0) case-end empty _( last :test (last ((+1) : ((+2) : ((+3) : empty)))) ((+3)) # returns everything but the last element of a list init Z [[case-some]] case-some <>?0 case-end case-init case-init <>?(~0) empty (^0 : (1 ~0)) case-end empty :test (init ((+1) : ((+2) : ((+3) : empty)))) ((+1) : ((+2) : empty)) # concatenates a list of lists to one list concat foldr append empty # TODO: ? # :test (concat ((((+1) : ((+2) : empty)) : ((+3) : ((+4) : empty))) : empty)) ((+1) : ((+2) : ((+3) : ((+4) : empty)))) :test (concat ("a" : ("b" : empty))) ("ab") # maps a function returning list of list and concatenates concat-map [foldr (append . 0) empty] :test (concat-map [-0 : (0 : empty)] ((+1) : ((+2) : empty))) ((-1) : ((+1) : ((-2) : ((+2) : empty)))) # zips two lists discarding excess elements zip Z [[[case-some]]] case-some <>?1 case-end case-zip case-zip <>?0 empty ((^1 : ^0) : (2 ~1 ~0)) case-end empty :test (zip ((+1) : ((+2) : empty)) ((+2) : ((+1) : empty))) (((+1) : (+2)) : (((+2) : (+1)) : empty)) # applies pairs of the zipped list as arguments to a function zip-with Z [[[[case-some]]]] case-some <>?1 case-end case-zip case-zip <>?0 empty ((2 ^1 ^0) : (3 2 ~1 ~0)) case-end empty :test (zip-with add ((+1) : ((+2) : empty)) ((+2) : ((+1) : empty))) ((+3) : ((+3) : empty)) # returns first n elements of a list take Z [[[case-some]]] case-some <>?0 case-end case-take case-take =?1 empty (^0 : (2 --1 ~0)) case-end empty :test (take (+2) ((+1) : ((+2) : ((+3) : empty)))) ((+1) : ((+2) : empty)) # takes elements while a predicate is satisfied take-while Z [[[case-some]]] case-some <>?0 case-end case-take case-take 1 ^0 (^0 : (2 1 ~0)) empty case-end empty :test (take-while zero? ((+0) : ((+0) : ((+1) : empty)))) ((+0) : ((+0) : empty)) # removes first n elements of a list drop Z [[[case-some]]] case-some <>?0 case-end case-drop case-drop =?1 0 (2 --1 ~0) case-end empty :test (drop (+2) ((+1) : ((+2) : ((+3) : empty)))) ((+3) : empty) # removes elements from list while a predicate is satisfied drop-while Z [[[case-some]]] case-some <>?0 case-end case-drop case-drop 1 ^0 (2 1 ~0) 0 case-end empty :test (drop-while zero? ((+0) : ((+0) : ((+1) : empty)))) ((+1) : empty) # returns true if any element in a list matches a predicate any? [lor? . (map 0)] :test (any? (\gre? (+2)) ((+1) : ((+2) : ((+3) : empty)))) (true) :test (any? (\gre? (+2)) ((+1) : ((+2) : ((+2) : empty)))) (false) # returns true if all elements in a list match a predicate all? [land? . (map 0)] :test (all? (\gre? (+2)) ((+3) : ((+4) : ((+5) : empty)))) (true) :test (all? (\gre? (+2)) ((+4) : ((+3) : ((+2) : empty)))) (false) # returns true if element is part of a list based on eq predicate in? [[any? (\1 0)]] :test (in? eq? (+3) ((+1) : ((+2) : ((+3) : empty)))) (true) :test (in? eq? (+0) ((+1) : ((+2) : ((+3) : empty)))) (false) # returns true if all elements of one list are equal to corresponding elements of other list # TODO: Better name leq? [[[land? (zip-with 2 1 0)]]] :test (leq? eq? ((+1) : ((+2) : empty)) ((+1) : ((+2) : empty))) (true) :test (leq? eq? ((+1) : ((+2) : empty)) ((+2) : ((+2) : empty))) (false) :test (leq? eq? empty empty) (true) # removes first element that match an eq predicate remove Z [[[[case-some]]]] case-some <>?0 case-end case-remove case-remove (2 ^0 1) ~0 (^0 : (3 2 1 ~0)) case-end empty :test (remove eq? (+2) ((+1) : ((+2) : ((+3) : ((+2) : empty))))) ((+1) : ((+3) : ((+2) : empty))) # removes duplicates from list based on eq predicate (keeps first occurrence) nub Z [[[case-some]]] case-some <>?0 case-end case-nub case-nub ^0 : (2 1 (~0 <#> [!(2 0 ^1)])) case-end empty :test (nub eq? ((+1) : ((+2) : ((+3) : empty)))) (((+1) : ((+2) : ((+3) : empty)))) :test (nub eq? ((+1) : ((+2) : ((+1) : empty)))) (((+1) : ((+2) : empty))) # returns a list with infinite-times a element repeat Z [[case-some]] case-some 0 : (1 0) :test (take (+3) (repeat (+4))) ((+4) : ((+4) : ((+4) : empty))) # returns a list with n-times a element replicate [[take 1 (repeat 0)]] :test (replicate (+3) (+4)) ((+4) : ((+4) : ((+4) : empty))) # returns an infinite list repeating a finite list cycle Z [[case-some]] case-some 0 ++ (1 0) :test (take (+6) (cycle "ab")) ("ababab") # returns a list with infinite-times previous (or start) value applied to a function iterate Z [[[case-some]]] case-some 0 : (2 1 (1 0)) :test (take (+5) (iterate inc (+0))) (((+0) : ((+1) : ((+2) : ((+3) : ((+4) : empty)))))) :test (take (+2) (iterate dec (+5))) (((+5) : ((+4) : empty))) :test (take (+5) (iterate I (+4))) (repeat (+5) (+4)) :test (take (+0) (iterate inc (+0))) (empty)