# MIT License, Copyright (c) 2024 Marvin Borner # see "on the representation of data in lambda-calculus" (Parigot 1989) # constant append/snoc # empty list element empty [0] ⧗ (Parigot a) # prepends an element to a list cons [[[[0 3 (2 1)]]]] ⧗ a → (Parigot a) → (Parigot a) …:… cons # returns the head of a list or k head [0 [0] [[1]]] ⧗ (Parigot a) → a :test (head ('a' : ('b' : ('c' : empty)))) ('a') :test (head empty) ([[1]]) # returns the tail of a list or &ki tail [[1 0 [[0]]]] ⧗ (Parigot a) → (Parigot a) :test (tail ('a' : ('b' : ('c' : empty)))) ('b' : ('c' : empty)) :test (tail empty) ([0 [[0]]]) # appends two lists append [[[2 (1 0)]]] ⧗ (Parigot a) → (Parigot a) → (Parigot a) …++… append :test (append ('a' : ('b' : empty)) ('c' : ('d' : empty))) ('a' : ('b' : ('c' : ('d' : empty)))) # appends an element to a list snoc [[[2 [0 2 1]]]] ⧗ (Parigot a) → a → (Parigot a) …;… snoc :test (snoc ('a' : ('b' : empty)) 'c') ('a' : ('b' : ('c' : empty))) iter [[[0 ι ρ ρ]]] ρ [[3 (1 0 0)]] ι [[4]]