# MIT License, Copyright (c) 2022 Marvin Borner :import std/Combinator . # true true K # false false KI # inverts boolean value not [0 false true] !( not :test (!true) (false) :test (!false) (true) # true if both args are true and [[1 0 false]] (&&) and :test (true && true) (true) :test (true && false) (false) :test (false && true) (false) :test (false && false) (false) # true if not both args are true nand [[1 0 1 false true]] :test (nand true true) (false) :test (nand true false) (true) :test (nand false true) (true) :test (nand false false) (true) # true if one of the args is true or [[1 true 0]] (||) or :test (true || true) (true) :test (true || false) (true) :test (false || true) (true) :test (false || false) (false) # true if both args are false nor [[1 1 0 false true]] :test (nor true true) (false) :test (nor true false) (false) :test (nor false true) (false) :test (nor false false) (true) # true if args are not same bools xor [[1 (not 0) 0]] :test (xor true true) (false) :test (xor true false) (true) :test (xor false true) (true) :test (xor false false) (false) # true if both args are same bools xnor [[1 0 (not 0)]] :test (xnor true true) (true) :test (xnor true false) (false) :test (xnor false true) (false) :test (xnor false false) (true) # if first arg is true, exec first exp; else second exp # this function is generally redundant # I personally just write (exp? case-T case-F) directly if [[[2 1 0]]] (?!) if :test (if true true false) (true) :test ((true ?! true) false) (true) :test (if false true false) (false) :test ((false ?! true) false) (false) # mathematical implies definition implies [[or (not 1) 0]] (=>?) implies :test (true =>? true) (true) :test (true =>? false) (false) :test (false =>? true) (true) :test (false =>? false) (true) # mathematical iff (if and only if) definition iff [[and (implies 1 0) (implies 0 1)]] (<=>?) iff :test (true <=>? true) (true) :test (true <=>? false) (false) :test (false <=>? true) (false) :test (false <=>? false) (true)