# MIT License, Copyright (c) 2022 Marvin Borner # experimental functions; sometimes list-based; could work on any base # TODO: some functions should be moved to respective bases :input std/Number :import std/List L # adds all values in list sum L.foldl add (+0) ⧗ (List Number) → Number ∑‣ sum :test (∑((+1) : ((+2) : L.{}(+3)))) ((+6)) # digit sum of all values digit-sum sum ∘ number→list ⧗ Number → Number :test ((digit-sum (+0)) =? (+0)) (true) :test ((digit-sum (+10)) =? (+1)) (true) :test ((digit-sum (+19)) =? (+10)) (true) # returns max value of list lmax L.foldl1 max ⧗ (List Number) → Number :test (lmax ((+1) : ((+3) : L.{}(+2)))) ((+3)) # returns min value of list lmin L.foldl1 min ⧗ (List Number) → Number :test (lmin ((+2) : ((+1) : L.{}(+0)))) ((+0)) # list from num to num {…→…} z [[[rec]]] ⧗ Number → Number → (List Number) rec 1 =? ++0 case-end case-list case-list 1 : (2 ++1 0) case-end L.empty :test ({ (+0) → (+2) }) ((+0) : ((+1) : L.{}(+2))) # equivalent of mathematical sum function ∑…→…|… z [[[[[rec]]]]] (+0) ⧗ Number → Number → (Number → Number) → Number rec 2 =? ++1 case-end case-sum case-sum 4 (3 + (0 2)) ++2 1 0 case-end 3 :test (∑ (+1) → (+3) | ++‣) ((+9)) # multiplies all values in list product L.foldl mul (+1) ⧗ (List Number) → Number ∏‣ product :test (∏((+1) : ((+2) : L.{}(+3)))) ((+6)) # equivalent of mathematical product function ∏…→…|… z [[[[[rec]]]]] (+1) ⧗ Number → Number → (Number → Number) → Number rec 2 =? ++1 case-end case-sum case-sum 4 (3 ⋅ (0 2)) ++2 1 0 case-end 3 :test (∏ (+1) → (+3) | ++‣) ((+24)) # greatest common divisor using repeated subtraction enhanced by ternary shifts # (temporary) gcd z [[[(1 =? 0) 1 (=?1 0 (=?0 1 else))]]] ⧗ Number → Number → Number else [[(1 ⋀? 0) ((+3) ⋅ (4 /³3 /³2)) (1 (4 /³3 2) (0 (4 3 /³2) else))]] (t⁰? (lst 1)) (t⁰? (lst 0)) else 3 >? 2 (4 (3 - 2) 2) (4 3 (2 - 3)) :test ((gcd (+2) (+4)) =? (+2)) (true) :test ((gcd (+10) (+5)) =? (+5)) (true) :test ((gcd (+3) (+8)) =? (+1)) (true) # greatest common divisor using modulo (mostly slower than gcd) # TODO: would be faster if ternary quot-rem was efficient! gcd* z [[[=?0 1 (2 0 (1 % 0))]]] ⧗ Number → Number → Number :test ((gcd* (+2) (+4)) =? (+2)) (true) :test ((gcd* (+10) (+5)) =? (+5)) (true) :test ((gcd* (+3) (+8)) =? (+1)) (true) # least common multiple using gcd lcm [[=?1 1 (=?0 0 |(1 / (gcd 1 0) ⋅ 0))]] ⧗ Number → Number → Number :test ((lcm (+12) (+18)) =? (+36)) (true) :test ((lcm (+42) (+25)) =? (+1050)) (true) # power function pow […!!… (iterate (…⋅… 0) (+1))] ⧗ Number → Number → Number …**… pow :test (((+2) ** (+3)) =? (+8)) (true) # modulo exponentiation pow-mod [[[(f (2 % 0) 1 (+1)) % 0]]] ⧗ Number → Number → Number → Number f y [[[[=?1 0 rec]]]] rec 3 (2 ⋅ 2 % 4) /²1 (=²?1 0 (2 ⋅ 0 % 4)) :test ((pow-mod (+2) (+3) (+5)) =? (+3)) (true) # power function using ternary exponentiation (TODO: fix, wrong..) pow* z [[[rec]]] ⧗ Number → Number → Number rec =?0 case-end case-pow case-pow =?(lst 0) ³(2 1 /³0) (³(2 1 /³0) ⋅ 1) ³‣ [0 ⋅ 0 ⋅ 0] case-end (+1) # factorial function # fac [∏ (+1) → 0 | i] ⧗ Number → Number fac [0 0] [[=?0 (+1) (0 ⋅ (1 1 --0))]] ⧗ Number → Number :test ((fac (+3)) =? (+6)) (true) # super factorial function superfac [∏ (+1) → 0 | fac] ⧗ Number → Number :test ((superfac (+4)) =? (+288)) ([[1]]) # hyper factorial function hyperfac [∏ (+1) → 0 | [0 ** 0]] ⧗ Number → Number :test ((hyperfac (+2)) =? (+4)) (true) :test ((hyperfac (+3)) =? (+108)) (true) :test ((hyperfac (+4)) =? (+27648)) ([[1]]) # alternate factorial function altfac y [[=?0 0 ((fac 0) - (1 --0))]] :test ((altfac (+3)) =? (+5)) ([[1]]) # exponential factorial function expfac y [[(0 =? (+1)) 0 (0 ** (1 --0))]] :test ((expfac (+4)) =? (+262144)) ([[1]]) # inverse factorial function invfac y [[[compare-case 1 (2 ++1 0) (-1) 0 (∏ (+0) → --1 | ++‣)]]] (+0) :test ((invfac (+1)) =? (+0)) ([[1]]) :test ((invfac (+2)) =? (+2)) ([[1]]) :test ((invfac (+120)) =? (+5)) ([[1]]) :test ((invfac (+119)) =? (-1)) ([[1]]) # calculates a powertower # also: [[foldr pow (+1) (replicate 0 1)]] powertower z [[[rec]]] ⧗ Number → Number → Number rec =?0 case-end case-rec case-end (+1) case-rec 1 ** (2 1 --0) :test ((powertower (+2) (+1)) =? (+2)) (true) :test ((powertower (+2) (+2)) =? (+4)) (true) :test ((powertower (+2) (+3)) =? (+16)) (true) :test ((powertower (+2) (+4)) =? (+65536)) (true) # knuth's up-arrow notation # arrow count → base → exponent arrow z [[[[rec]]]] ⧗ Number → Number → Number → Number rec =?2 case-end case-rec case-end 1 ⋅ 0 case-rec L.foldr (3 --2) 1 (L.replicate --0 1) :test ((arrow (+1) (+1) (+1)) =? (+1)) (true) :test ((arrow (+1) (+2) (+4)) =? (+16)) (true) :test ((arrow (+2) (+2) (+4)) =? (+65536)) (true) # fibonacci sequence # TODO: faster fib? fibs L.map L.head (L.iterate &[[0 : (1 + 0)]] ((+0) : (+1))) ⧗ (List Number) fib [L.index fibs ++0] ⧗ Number :test (fib (+5)) ((+8)) # floored integer square root using Babylonian method sqrt [z [[[[rec]]]] (+1) 0 0] ⧗ Number → Number rec (1 >? 2) case-rec case-end case-rec [4 (1 / 0) 0 1] /²(2 + 1) case-end 1 :test ((sqrt (+0)) =? (+0)) (true) :test ((sqrt (+1)) =? (+1)) (true) :test ((sqrt (+2)) =? (+1)) (true) :test ((sqrt (+5)) =? (+2)) (true) :test ((sqrt (+9)) =? (+3)) (true) # integer logarithm # TODO: could we somehow use the change-of-base rule and efficient log3? log z [[[[rec]]]] (+1) ⧗ Number → Number → Number rec [((3 ≤? 1) ⋀? (1 ? 4 case-1 (=?0 case-2 case-3)]] (quot-rem 2 1)]]]] case-1 4 >? (+1) {}4 empty case-2 3 : (5 1 (3 : 2)) case-3 5 4 2 # π as a list of decimal digits # translation of unbounded spigot algorithm by Jeremy Gibbons # TODO: faster! # → BBP/Bellard's formula with ternary base? # TODO: |log|, better primes/mod/div π y [[[[[calc]]]]] (+1) (+180) (+60) (+2) ⧗ (List Number) calc [[0 : (6 q r t ++2)]] a b a ↑⁰(↑⁺0 ⋅ (↑⁰0 + (+2))) b (3 ⋅ ↑⁰(↑⁻(↑⁻0)) + ((+5) ⋅ 2)) / ((+5) ⋅ 1) q (+10) ⋅ 5 ⋅ 2 ⋅ --((+2) ⋅ 2) r (+10) ⋅ 1 ⋅ (5 ⋅ ((+5) ⋅ 2 - (+2)) + 4 - (0 ⋅ 3)) t 3 ⋅ 1